The nickel isotope evolution of seawater through the Phanerozoic Eon

MINGZHAO SUN¹, COREY ARCHER¹, TIM SWEERE¹, YANAN SHEN², THOMAS ALGEO³, ALEXANDER J. DICKSON⁴, BENJAMIN GILL⁵, TAIS W. DAHL⁶ AND DEREK VANCE¹

¹ETH Zürich

²University of Science and Technology of China
³University of Cincinnati
⁴Royal Holloway, University of London
⁵Virginia Polytechnic Institute and State University
⁶University of Copenhagen
Presenting Author: mingzhao.sun@erdw.ethz.ch

Nickel (Ni) isotopes show a homogenous composition in the modern deep ocean [1-4]. This composition is heavier than the main inputs from the continents, controlled by the relative outputs to the competing sinks, with the output to Mn-rich sediments being the main lever that drives the modern ocean to its heavy value [5]. It has recently been [6] shown that the $d^{60}Ni_{auth}$, the $d^{60}Ni$ obtained from the authigenic fraction, of modern ocean sediments in upwelling regions records the $d^{60}Ni$ of contemporaneous seawater. Thus, measurements of ancient upwelling sediments have the potential to track the secular evolution of whole-ocean $d^{60}Ni$.

Here we investigate high TOC (>3%) shales of different ages spanning the Phanerozoic Eon. We present bulk sediment d^{60} Ni, corrected for its detrital component, to track the secular changes to d^{60} Ni_{auth}, and thus contemporaneous seawater. Our results show a relatively constant d^{60} Ni_{auth} of around +0.7‰ from the late Cambrian through to the Mesozoic-Cenozoic boundary. This value is similar to the modern value of the dominant riverine input to the oceans [1]. In the early Cenozoic d^{60} Ni_{auth}, and thus contemporaneous seawater, increases to the modern value of around +1.3‰. The most likely explanation for this change is an increase in burial of Mn-oxide-rich pelagic sediments in the early Cenozoic. We explore these changes in the context of changing biogeochemical and redox conditions of the deep ocean during the Phanerozoic.

[1] Cameron, V and Vance, D (2014) *Geochimica et Cosmochimica Acta*, 128, 195-211.

[2] Archer, C., et al., (2020). *Earth and Planetary Science Letters*, 535, 116118.

[3] Takano, S., et al. (2017). *Analytica chimica acta*, 967, 1-11.

[4] Yang, S. C., et al. (2021). *Geochimica et Cosmochimica Acta*, 309, 235-250.

[5] Little, S.H., et al., (2020). *Earth and Planetary Science Letters*, 547: 116461.

[6] Ciscato, E.R., et al. (2018). *Earth and Planetary Science Letters*, 494: 239-250.