Damp to super-hydrous magmas recorded by arc root cumulates

BENJAMIN URANN¹, **VÉRONIQUE LE ROUX**¹, OLIVER JAGOUTZ², OTHMAR MÜNTENER³, MARK BEHN⁴ AND EMILY CHIN⁵

¹Woods Hole Oceanographic Institution
²Massachusetts Institute of Technology
³University of Lausanne
⁴Boston College
⁵Scripps Institution of Oceanography, UC San Diego
Presenting Author: vleroux@whoi.edu

Magmatic volatiles (e.g., H₂O) are abundant in arc melts and exert fundamental controls on magma evolution, eruption dynamics, and the formation of economic ore deposits. To constrain the H₂O content of arc magmas, most studies have relied on measuring extrusive products and mineral-hosted melt inclusions. However, these methods have inherent limitations that obfuscate the full range of H₂O in arc magmas. Here, we report secondary ion mass spectrometry measurements of volatile (H₂O, F, P, S, Cl) abundances in lower crustal cumulate minerals from the Kohistan paleo-arc (NW Pakistan), and determine H₂O abundances of melts from which the cumulates crystallized. Pyroxenes retained magmatic H2O abundances and record damp to hydrous (<1-10 wt.% H₂O) primitive melts. Subsequent crystal fractionation led to formation of super-hydrous melts with ~12-20 wt.% H₂O, predicted petrologically yet never recorded by melt inclusions. Fluid exsolution from super-hydrous melts during ascent is key to porphry copper deposit formation, while foundering of hydrated lower arc crust provides an effective means of transporting hydrogen back into the mantle.