Detecting low levels of radioactive Sr in environmental samples using RPQ-TIMS

SHIGEYUKI WAKAKI1, JO AOKI2, KATZ SUZUKI3, TAKASHI MIYAZAKI1, JENNY ROBERTS4, HAUKE VOLLSTAEDT4, YOSHITAKA TAKAGAI2, DARREN TOLLSTRUP4 AND SATOSHI SASAKI4

1JAMSTEC
2Fukushima University
3Japan Agency for Marine-Earth Science and Technology
4Thermo Fisher Scientific

Presenting Author: darren.tollstrup2@thermofisher.com

In some environments, such as sites that have experienced radioactive contamination from nuclear accidents or weapons testing, radioactive strontium (90Sr; half-life of 28.8 years) can be found. The monitoring of 90Sr is important from a human perspective because when contaminated food or water is ingested, 90Sr is concentrated primarily in bones and bone marrow, resulting in bone cancer, cancer of nearby tissues and leukemia. Typically, the abundance of 90Sr has been measured using radiometric techniques, such as solid/liquid scintillators or gas ionization detectors. The major disadvantage of this technique is the total analysis time (5-20 days)[1]. In recent years, thermal ionization mass spectrometry has provided a means to dramatically reduce analysis time, improving sample through-put to 10-15 samples/day [2], [3]. However, the peak tailing from the highly abundant 88Sr has limited the ability of conventional mass spectrometry to be able to resolve less radioactive samples. Here, we demonstrate the ability of the Retarding Quadrupole Lenses (RPQ) of the Thermo Scientific™ Triton™ Series TIMS to precisely and accurately measure 90Sr/88Sr ratios as low as 9.1x10^{-12} [4]. This allows the measurement of low activity environmental samples from the vicinity of the Chernobyl and Fukushima nuclear disasters with a modern 90Sr activities ranging between 14.8 and 110 Bq/kg.