Contribution of Zn isotope ratios in the understanding of Neandertals subsistence strategy: a case study from Gabasa, Spain

KLERVIA JAOUEN¹, VANESSA VILLALBA MOUCO^{2,3,4}, GEOFF M SMITH⁵, MANUEL TROST⁶, JENNIFER LEICHLITER⁷, TINA LUEDECKE⁸, PAULINE MEJEAN¹, STEPHANIE MANDROU¹, JÉRÔME CHMELEFF¹, DANAE GUISERIX⁹, NICOLAS BOURGON⁶, MARIA FERNANDA BLASCO SANCHO¹⁰, JÉSSICA MENDES CARDOSO¹, CAMILLE DUQUENOY¹, ZINEB MOUBTAHIJ⁶, DOMINGO C SALAZAR GARCIA^{11,12}, MICHAEL RICHARDS¹³, THOMAS TÜTKEN^{14,15}, JEAN-JACQUES HUBLIN¹⁶, PILAR UTRILLA⁴ AND LOURDES MONTES⁴

Presenting Author: klervia.jaouen@get.omp.eu

Traditionally, the isotopic tool of choice to characterize ancient diets is the nitrogen isotope ratio. In Middle Paleolithic Europe, this type of analysis showed that Neandertals were purely carnivorous. However, other tracers such as plant microremains and micro-DNA in dental calculus suggest that Iberian Neandertals may have frequently consumed plants. Due to poor preservation of collagen at Paleolithic sites in the region, nitrogen isotope ratios cannot be used to confirm this conclusion. Zinc isotope ratios (δ^{66} Zn) have recently proven to be a promising method for reconstructing the trophic level in the absence of organic matter preservation. We conducted zinc (Zn), but also strontium (Sr), carbon (C) and oxygen (O) isotope and trace element analyses in dental enamel on a Pleistocene food web in Gabasa, Spain. Our data shows an extremely low, carnivore-like δ⁶⁶Zn value for the Neandertal's tooth, which contradicts the hypothesis of substantial plant consumption. We will discuss the possible origin of such a δ^{66} Zn value, comparing it to that of sympatric carnivore and herbivore species from Gabasa, hominins from other sites and the abovementioned other

¹Géosciences Environnement Toulouse/CNRS

²Institute of Evolutionary Biology

³Max Planck Institute for the Science of Human History

⁴University of Zaragoza

⁵University of Kent

⁶Max Planck Institute for Evolutionary Anthropology

⁷Johannes Gutenberg University

⁸Max Planck Institute for Chemistry

⁹ENS-Lyon

¹⁰Ayutamiento de Zaragoza

¹¹IKERBASQUE

¹²University of Valencia

¹³Simon Fraser University

¹⁴Institute of Geosciences, Johannes Gutenberg University Mainz

¹⁵ Universität Mainz, Department of Analytical Palaeontology

¹⁶Collège de France