Behavior of stable tungsten isotopes on the Earth's surface

RUIYU YANG¹, TAO LI¹, DANIEL STUBBS², TIANYU CHEN¹, SHU LIU¹, DAVID B. KEMP³, WEIQIANG LI¹, SHOUYE YANG⁴, JIANFANG CHEN⁵, TIM ELLIOTT², OLAF DELLWIG⁶, JUN CHEN¹ AND GAOJUN LI¹

¹Nanjing University

²University of Bristol

³State Key Laboratory of Biogeology and Environmental Geology and Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences (Wuhan)

⁴State Key Laboratory of Marine Geology, Tongji University, Shanghai, China

⁵Second Institute of Oceanography, Ministry of Natural Resources (MNR)

⁶Leibniz Institute for Baltic Sea Research (IOW)

Presenting Author: yangry1210@163.com

Stable tungsten isotope compositions ($\delta^{186/184}$ W) show great potential for reconstructing paleo-redox conditions and environmental changes, as well as for tracing cycling of materials associated with solid Earth dynamics. However, the $\delta^{186/184}$ W of Earth's major W reservoirs are not fully characterized. It is also unclear how the Earth surface processes redistribute W between different reservoirs, which is a prerequisite for widespread application of $\delta^{186/184}$ W as a paleoclimatic proxy.

In this work, we conduct a systematic investigation on $\delta^{186/184}$ W compositions of a wide range of geological materials, specifically aiming to explore the behavior of stable W isotopes during Earth's surface processes, and to constrain modern marine W budget. The $\delta^{186/184}W$ of granite samples shows that the upper continental crust (UCC) has a heterogenous W isotopic composition, ranging from 0.08 to 0.16‰. We provide a useful estimation for the average $\delta^{186/184}$ W composition of UCC documented by the eolian loess with an average $\delta^{186/184}$ W value of $0.01\pm0.01\%$ (mean ±2 standard error) (1), which is lower than the mantle value $(0.09 \pm 0.02\%)$ (2). River water samples taken from major Asian rivers show consistently higher $\delta^{186/184}$ W value of 0.17-0.71‰ than bedrock. Furthermore, a detailed research on a granitic catchment in Southeast China shows that light W isotopes are preferentially adsorbed to Fe-Mn oxyhydroxides in weathering processes.

This work comprehensively constrain the W cycle on the Earth's surface, which is of fundamental significance in understanding the global elemental and isotopic W budget.

[1] Yang et al. (2022) *GCA* in press, (doi:10.1016/j.gca.2022.01.006)

[2] Kurzweil et al. (2019) GCA 251, 176-191