Global-scale emergence of continental crust during Mesoarchean - early Neoarchean

WEI WANG SR.¹, PETER A CAWOOD², CHRISTOPHER SPENCER³, MANOJ K. PANDIT⁴, JUN-HONG ZHAO⁵, XIAO-PING XIA⁶, JIANPING ZHENG⁷ AND GUIMEI LU⁸

¹China University of Geosciences (Wuhan)
²Monash University
³Queen's University
⁴University of Rajasthan
⁵School of Earth Sciences, China University of Geosciences, Wuhan, P.R. China
⁶Guangzhou Institute of Geochemistry, Chinses Academy of Science
⁷China University of Geosciences, Wuhan
⁸China University of Geosciences
Presenting Author: wwz@cug.edu.cn

The timing of the emergence of subaerial landmasses is equivocally constrained as post-Archean, and continues to be a much-debated issue. In this study, we document exceptionally ^{18}O depleted ($\delta^{18}\text{O}$ < 4.7 ‰) Meso- to early Neoarchean magmatism in India that shows a similarity with coeval low δ^{18} O magmatism reported from Australia, South America, and North China. Such global-scale generation of low δ^{18} O magmas would require high-temperature meteoric water-rock interaction in the uppermost crust, synchronous with magma generation, and necessitating the emergence of a substantial volume of the continental crust. The timing of this low $\delta^{18}O$ magmatism coincides with the development of extensive, subaerial, Large Igneous Provinces, a downward shift in $\delta^{18}O$ and $\delta^{17}O$ values in shales, the rise of normalized 87Sr/86Sr in seawater, and an intermittent upsurge in the quantum of atmospheric oxygen. We propose that the initial emergence of substantial volumes of continental crust occurred at ~3.2 Ga and peaked at 2.8-2.6 Ga, facilitating the generation of globally distributed, low δ^{18} O magmas, and the event can be linked to the first appearance of atmospheric oxygen.