Growth and thermal maturation of the Toba magma reservoir

PING-PING LIU¹, LUCA CARICCHI², SUN-LIN CHUNG³, XIAN-HUA LI⁴, QIULI LI⁴, MEI-FU ZHOU⁵, YU-MING LAI⁶, AZMAN ABDUL GHANI⁷, THEODORA SIHOTANG⁸, TOM SHELDRAKE² AND GUY SIMPSON²

¹School of Earth and Space Sciences, Peking University
²University of Geneva
³Academia Sinica, Taipei, Taiwan
⁴Institute of Geology and Geophysics, Chinese Academy of Sciences
⁵Hong Kong University, China
⁶National Taiwan Normal University, Taipei, Taiwan
⁷University of Malaya
⁸iSamosir Geoarea Management Board, Toba Caldera Geopark

Presenting Author: ppliu@pku.edu.cn

The Toba volcanic system in Indonesia has produced two of the largest eruptions (>2000 km³ DRE each) on Earth since the Quaternary. U-Pb crystallization ages of zircon span a period of ~600 ky before each eruptive event and in the run-up to each eruption the mean and variance of the zircons' U content decrease. To quantify the process of accumulation of eruptible magma underneath the Toba caldera, we integrated these observations with thermal and geochemical modeling. We show that caldera-forming eruptions at Toba are the result of progressive thermal maturation of the upper crustal magma reservoir, which grows and chemically homogenizes, by sustained magma influx at average volumetric rates between 0.008 and 0.01 km³/y over the past 2.2 Myr. Protracted thermal pulses related to magma recharge events prime the system for eruption, without necessarily requiring an increased magma recharge rate before the two super-eruptions. If the rate of magma input was maintained since the last super-eruption of Toba at 75 ka, eruptible magma is currently accumulating at a minimum rate of ~4.2 km3 per millennium, and the current estimate of the total volume of potentially eruptible magma available today is a minimum of ~315 km³. Our approach to evaluate magma flux and rate of eruptible magma accumulation is applicable to other volcanic systems capable of producing super-eruptions, and thereby could help assessing the potential of active volcanic systems to feed super-eruptions.