Nb-Zr systematics of rutiles from the Mile IIE iron meteorite

KOHARU FUJIMURA¹, MAKIKO K. HABA¹, MARIA SCHÖNBÄCHLER² AND MANUELA FEHR²

¹Tokyo Institute of Technology ²ETH Zürich

Presenting Author: fujimura.k.af@m.titech.ac.jp

The ⁹²Nb-⁹²Zr decay system with a half-life of 37 Ma has been recognized as a promising tool to provide chronological information in the early Solar System [1,2]. A recent study for mesosiderite rutiles indicates that the ⁹²Nb/⁹³Nb ratio of the Solar System started with $(1.66 \pm 0.10) \times 10^{-5}$ [3]. In contrast, a higher initial ratio has been reported for Northwest Africa 6704 which likely originated from the outer Solar System [4]. Thus, the heterogeneity of ⁹²Nb distribution in the early Solar System must be evaluated for utilizing the Nb-Zr chronometer. Meteoritic rutiles are a suitable mineral for ⁹²Nb-⁹²Zr dating because of their high Zr and Nb contents with large variations [3]. In this study, we used the Miles IIE iron meteorite and aimed to prepare three rutile fractions with different Nb/Zr ratios to obtain a precise internal isochron.

Rutile were hand-picked after dissolving the metal part in 6M HCl and the silicate inclusions in concentrated HNO₃-HF. The individual rutile grains were examined for Nb and Zr concentrations using FE-EPMA and were arranged into three fractions depending on their Nb/Zr ratios. The fractions were dissolved in concentrated HNO₃-HF using Parr[®] bombs. Reference materials (BHVO-2, NIST SRM 154c) were also processed to validate the method. The ⁹³Nb/⁹⁰Zr ratios were measured with a Thermo X series 2 quadrupole ICP-MS by taking up a few % sample aliquots.

The FE-EPMA analysis of rutiles yielded concentrations of up to 21000 ppm Nb and 200–8300 ppm Zr and ⁹³Nb/⁹⁰Zr ratios of 0.05–20.1. The preliminary ICP-MS analysis yielded ⁹³Nb/⁹⁰Zr ratios of 0.58 \pm 0.05, 3.1 \pm 0.3, and 16.6 \pm 0.4 (2 σ) for the three fractions. This variation is the largest among the previous ⁹²Nb-⁹²Zr studies using internal isochrons [1–4] and demonstrates that our method using rutiles would provide a precise initial ⁹²Nb/⁹³Nb ratio of the parent body.

References: [1] Schönbächler et al. (2002) *Science*, 295, 1705– 1708. [2] Iizuka et al. (2016) *EPSL*, 439, 172–181. [3] Haba et al. (2021) *PNAS*, 118, e2017750118. [4] Hibiya et al. (2019) 82nd Annual Meeting of The Meteoritical Society, p. 6370.