How to build a legacy of scientific leadership: the HR formula

PROF. JULIA HAMMER, PHD1, LESLIE BAKER2, JENNI BARCLAY3, MICHAEL R. CARROLL4, MICHELLE COOMBS5, ELIZABETH COTTRELL6, NICHOLAS J DYGERT7, LINDA ELKINS-TANTON8, EMILY FIRST9, JAMES GARDNER10, DAVID GOLDSBY11, JAMES GREENWOOD12, MARIE JOHNSON13, MIKE KRAWCZYNKI14, CHARLES MANDEVILLE15, MOLLY MCCANTA16, MICHELLE E. MINITTI17, WILLIAM NELSON18, TABB PRISSEL19, DINA VENEZKY20, CATHERINE WEITZ21 AND DIANE WOODRUFF22

1University of Hawaii
2University of Idaho
3University of East Anglia
4Camerino University
5U.S. Geological Survey
6National Museum of Natural History, Smithsonian Institution
7University of Tennessee, Knoxville
8Arizona State University
9Cornell University
10University of Texas at Austin
11University of Pennsylvania
12Wesleyan University
13Cal State Fullerton
14Washington University in St. Louis
15US Geological Survey
16University of Tennessee at Knoxville
17Framework, Silver Spring
18University of Hawaii at Manoa
19NASA
20Smith College
21Planetary Science Institute
22Anadarko Petroleum Company

Presenting Author: jhammer@hawaii.edu

Throughout their 50-year scientific partnership at Brown University, Paul Hess and Malcolm Rutherford shaped the frontier of planetary petrology and mentored dozens of undergraduates, graduate students, postdocs and junior faculty. Their contributions in the scientific and mentoring domains are exemplified by transformative studies rooted in experimental petrology.

• Working with exceptionally valuable extraterrestrial materials, Rutherford determined the compositions of liquids in equilibrium with the mineral assemblage by performing phase equilibrium experiments and homogenizing melt inclusions in a Martian meteorite, finding fundamental distinctions between SNC and terrestrial basalts.

• Separately and together, they pursued interests in silicate liquid immiscibility. Hess considered structural roles of elements in the context of compositionally simple systems, guided by phase equilibria and enthalpy calculations whereas Rutherford performed experiments to determine the intensive parameters leading to development of Si-rich liquids from plausible parental liquids in the lunar interior.

• Rutherford's internally heated pressure vessel (IHPV) has been the most consistently productive in the USA, from 1980-2022. Sequences of studies exploiting the unique features of Rutherford's IHPV apparatus explored the behavior of C-O-H-S volatiles in basaltic magmas, helping to resolve their abundances and speciation in the lunar interior.

The duo established an impressive scientific lineage that populates academic departments, industrial labs, NASA, the Smithsonian Institution, National Labs, and the USGS. Rutherford and Hess guided dozens of early-career investigators through evolving socio-professional contexts. How did they achieve this? They model admirable personal qualities including enthusiasm and selflessness; they tailor career guidance to each mentee; they are generous with their time; they bolster mentees' confidence; and they advocate personal/professional balance. The positive outcomes of mentoring for early-career scientists are obvious, as are the positive outcomes of good mentoring for scientific advance. The HR partnership demonstrates the strategic benefits of investing time in peer-mentor relationships and forging a supportive community that begins at the lab bench.