Evolution of ³He/⁴He ratios in the 2021 Cumbre Vieja lavas

MAIA COHEN¹, FORREST HORTON², MARC-ANTOINE LONGPRÉ³, JOSHUA CURTICE² AND MARK D KURZ²

 ¹MIT-WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering
²Woods Hole Oceanographic Institution
³City University of New York
Presenting Author: maiaeve@mit.edu

The Canary Islands are an intraplate volcanic island chain that may be associated with a deeply-rooted mantle plume [1]. ³He/⁴He measurements are a powerful tool for investigating the sources of hotspot lavas and may provide important geochemical context for the 2021 Cumbre Vieja eruption (19 September-13 December), with respect to other historical La Palma eruptions and the Canary Islands hotspot in general. We measured 3He/4He ratios in clinopyroxene and olivine phenocrysts from lavas erupted on 28 September and 13 October. Vacuum crushing experiments done on clinopyroxene from the earlier lava yielded 3 x 10⁻⁸ cm³ ⁴He/g (at standard temperature and pressure) and an average ${}^{3}\text{He}/{}^{4}\text{He}$ ratio of 7.3 ± 0.3 Ra (1 SD, n=3), where Ra is the atmospheric ${}^{3}\text{He}/{}^{4}\text{He}$ (1.384 x 10⁻⁶). Olivine and clinopyroxene mineral separates from the later lava flow yielded three times as much ⁴He/g and average ³He/⁴He ratios of 7.7 ± 0.5 Ra (n=3) and 7.3 ± 0.4 Ra (n=3), respectively. Thus, within uncertainty, ³He/⁴He did not change in the Cumbre Vieja lavas over the two-week period spanned by our samples. Our results are within the uncertainty of ³He/⁴He measured for olivine and clinopyroxene from previous eruptions on La Palma $(7.6 \pm 0.8 \text{ Ra})$ [2]; they are also within the range of mid-ocean ridge basalt ${}^{3}\text{He}/{}^{4}\text{He}$ ratios of 8 ± 1 Ra [3]. We conclude the 2021 lavas contain helium and volatiles from the same source as previous eruptions: mantle containing a high ²³⁸U/²⁰⁴Pb (HIMU) component [4]. Surprisingly, hydrothermal fluids collected on La Palma in 1995 and 2006 had higher ${}^{3}\text{He}/{}^{4}\text{He}$ ratios of 9.1 ± 0.1 Ra [5]. Expansion of our ³He/⁴He dataset to lavas from the remainder of the 2021 eruptive sequence may shed light on any isotopic variability during the early and late stages of the eruption.

[1] S.W. French, B. Romanowicz, Nature 525, 95-99 (2015).

[2] J.M.D. Day, D.R. Hilton, EPSL 305, 226-234 (2011).

[3] D.W. Graham, et al., *Noble Gasses in Geochemistry and Cosmochemistry*, *MSA* 47, (2002).

[4] D.R. Hilton, et al., GCA 64(12), 2119-2132 (2000).

[5] J.M.D. Day, D.R. Hilton, Geology 49(2), 120-124 (2021).