High H₂O/Ce source in the mantle: constrain from garnet pyroxenites originated from subducted oceanic crust

JIANG YU, **YAN-TAO HAO** AND PEI LI

Zhejiang University

Presenting Author: ythao@zju.edu.cn

Mantle xenoliths from Jiaohe, China, including spinel pyroxenites, spinel peridotites and garnet pyroxenites xenoliths, were evaluated for the water distribution of the lithospheric mantle. The spinel pyroxenites of Jiaohe have clinopyroxene (cpx) Mg# range from 88.4 to 89.3, higher than those of highpressure cumulative pyroxenites of Hannuoba, but lower than those of spinel peridotites. Spinel pyroxenites also behaves differently from high-pressure cumulative pyroxenites and spinel peridotites in the covariance diagram between TiO2 and Mg# in cpx, but with the characteristics similar to Cr-pyroxenites in Hannuoba. Such a phenomenon indicates that the spinel pyroxenites in Jiaohe were formed by metasomatism. But the variation of water content and H₂O/Ce ratio of Jiaohe spinel pyroxenites show a narrower range than that of Hannuoba Crpyroxenites. Such a discrepancy between Jiaohe spinel pyroxenites and Hannuoba Cr-pyroxenites may related to the degree of metasomatism they experienced. The Cr₂O₃, Al₂O₃ contents of clinopyroxene in spinel peridotites, which range 1.7 to 14.2 wt.%, well correlate with their Mg#. These correlations are attributed to partial melting. The water contents and H₂O/Ce ratio (which range from 8 to 66 ppm, 22 to 325 distinctively) of these clinopyroxenes shows no rigorous relation with their Mg#. Fluid-related metasomatism can increase the H₂O/Ce ratio of mantle rocks evidenced by the correlation of (Ba/Th) and H₂O/Ce of whole rock. The garnet pyroxenites are considered as remnants of oceanic lower crust. The water content of the garnet pyroxenite is 55-100 ppm, and the H₂O/Ce ratio is 37-742. Compared with the pyroxenites of Hannuoba and Hawaiian, the garnet pyroxenites in Jiaohe have low water content and extremely wide H₂O/Ce ratio. Such features may be formed in the subduction process, which can lower its water content by dehydration, or addition materials with low H₂O/Ce ratio and low water content. Comparing with water content and H₂O/Ce ratio of melts (those melts equilibrium with xenoliths and formed by their partial melting) related with spinel pyroxenites, spinel peridotites and garnet pyroxenites in Jiaohe, the high H₂O/Ce ratio end member of basalt in Shuangliao may related with garnet pyroxenites in Jiaohe.