Extending the ⁸¹Kr-Dating range down to 10 ka

WEI JIANG¹, HAO LI¹, AMIN L TONG¹, JI-QIANG GU¹, YAN-QING CHU¹, XI-ZE DONG¹, SHUI-MING HU¹, ZE-HUA JIA², JIAN-LI LIU², ZHENG-TIAN LU¹, FLORIAN RITTERBUSCH¹, LIANG-TING SUN² AND GUO-MIN YANG¹

¹University of Science and Technology of China ²CAS Institute of Modern Physics Presenting Author: wjiang1@ustc.edu.cn

The Atom Trap Trace Analysis (ATTA) method has allowed routine analysis of the long-lived noble-gas radioisotope ⁸¹Kr, ⁸⁵Kr, and ³⁹Ar, which are ideal tracers for environmental water and ice samples. Together with ¹⁴C, they cover an age range from a few to 1.3 million years. In this talk we will report the latest developments on radiokrypton and radioargon dating in our laboratory at the University of Science and Technology of China (USTC).

We'll show the recent progress on two fronts. First is that we have developed the ability to perform high precision ⁸¹Kr-dating. For groundwater younger than 70 ka, the analytical uncertainty of the relative abundance of ⁸¹Kr approaches 1%, which translates to an age uncertainty around ± 4 ka. The lower dating limit of ⁸¹Kr thus is extended to about 10 ka. This extension fills the dating gap previously existed between ¹⁴C and ⁸¹Kr and allows direct comparison between these two dating techniques. The second one is that the ³⁹Ar-ATTA at USTC is up and running. The system is capable of analysing small (1 - 5 kg)environmental water or ice samples and has precisions better than 15% in the range of 250 - 1,300 years. Moreover, to reduce the measurement time, we have developed a pre-enrichment system that increases the isotopic abundance of ³⁹Ar in Ar samples by a factor of 100 before the atom-trap analysis. Quantitative analysis has been demonstrated with pre-enriched samples. These developments will enable large scale applications of ³⁹Ar dating.

Website: http://atta.ustc.edu.cn