
Antiphased dust deposition and productivity in the Antarctic Zone over 1.5 million years

MICHAEL E WEBER¹, IAN BAILEY², SIDNEY R HEMMING³, YASMINA M MARTOS⁴, BRENDAN T REILLY⁵, THOMAS A RONGE⁶, STEFANIE BRACHFELD⁷, TREVOR WILLIAMS⁸, SIMON BELT⁹, LUKAS SMIK⁹, HENDRIK VOGEL¹⁰, VICTORIA PECK¹¹, DR. MARCUS GUTJAHR¹² AND OSAMU SEKI¹³

Presenting Author: mike.weber@uni-bonn.de

The Southern Ocean paleoceanography provides key insights into how iron fertilization and oceanic productivity developed through Pleistocene ice-ages and their role in influencing the carbon cycle. We report the first high-resolution record of dust deposition and ocean productivity for the Antarctic Zone, close to the main dust source, Patagonia (Fig. 1). Our deep-ocean records cover the last 1.5 Ma, thus doubling that from Antarctic ice-cores. We find a 5 to 15-fold increase in dust deposition during glacials and a 2 to 5-fold increase in biogenic silica deposition, reflecting higher ocean productivity during interglacials. This antiphasing persisted throughout the last 25 glacial cycles. Dust deposition became more pronounced across the Mid-Pleistocene Transition (MPT) in the Southern Hemisphere, with an abrupt shift suggesting more severe glaciations since ~0.9 Ma. Productivity was intermediate pre-MPT, lowest during the MPT and highest since 0.4 Ma. Generally, glacials experienced extended sea-ice cover, reduced bottom-water export and Weddell Gyre dynamics, which helped lower atmospheric CO2 levels.

¹Institute for Geosciences, University of Bonn

²Camborne School of Mines and Environmental Sustainability Institute, University of Exeter

³Lamont-Doherty Earth Observatory of Columbia, Columbia University

⁴NASA Goddard Space Flight Center, Planetary Magnetospheres Laboratory

⁵Scripps Institution of Oceanography, University of California San Diego

⁶Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research

⁷Earth and Environmental Studies, Montclair State University

⁸Texas A&M University

⁹University of Plymouth

¹⁰Oeschger Centre for Climate Change Research, University of Bern

¹¹British Antarctic Survey

¹²GEOMAR Helmholtz Centre for Ocean Research Kiel

¹³Hokkaido University