High-pressure and high-temperature vibrational properties and anharmonicity of siderite (FeCO₃) and rhodochrosite (MnCO₃) up to 47 GPa and 1100 K by Raman spectroscopy

CHAO WANG^{1,2}, RENBIAO TAO², LU'AN REN², JESSE B. WALTERS³ AND LIFEI ZHANG⁴

¹Peking University

²Center for High Pressure Science and Technology Advanced Research (HPSTAR)

³Institut für Geowissenschaften, Goethe Universität

⁴School of Earth and Space Sciences, Peking University

Presenting Author: wangchao1996@pku.edu.cn

Siderite (FeCO₃) and rhodochrosite (MnCO₃) are two interesting carbonate gangues, which normally occur in hydrothermal deposits on deep-sea altered oceanic crust. Despite the ubiquity of carbonates in the slab, little is known of the physiochemical behavior of siderite and rhodochrosite at highpressure (P) and high-temperature (T) conditions during subduction. In this study, we characterized the Raman vibrational spectra of natural siderite and rhodochrosite up to 47 GPa and 1100 K in an externally-heated diamond-anvil cell (DAC). Experimental results show that the Raman frequency shifts (v_i) for siderite and rhodochrosite are a function of both P and T, and the effect of the P-T cross derivative term cannot be neglected, especially at high-P and high-T conditions. Based on the functional relationship of v_i -P-T, the P-T calibrants of siderite and rhodochrosite are developed, respectively (Fig. 1). This is significant for studying the water-carbonate interaction at high P-T conditions in a DAC because the undesired change of the experimental system from traditional pressure sensors (e.g., ruby, quartz) in a reaction chamber can be avoided. Like previous studies, we observed a sharp spin transition at ~ 45 GPa in siderite and a phase transition from MnCO₃-I to MnCO₃-II at ~ 46 GPa for rhodochrosite at room temperature. Furthermore, we determined the isobaric and isothermal equivalents of the mode Grüneisen parameter (γ_{iT} , γ_{iP}) and the anharmonic parameter (a_i) for each Raman mode of siderite and rhodochrosite. We found that the $\delta v_i / \delta P$, $\delta v_i / \delta T$, γ_{iT} , γ_{iP} and a_i span a much larger value range for the external lattice modes (T, L) than internal modes (v_4, v_1) in both siderite and rhodochrosite. Combining high P-T Raman frequency shifts and the first-order Murnaghan equation of state, the temperature dependence of the bulk modulus (K_T) for siderite and rhodochrosite can be derived (Eq. 1, Where T is in °C).

$$K_T(FeCO_3) = 117 - 0.02961 \times (T - 20);$$
 (1a)
 $K_T(MnCO_3) = 110 - 0.01735 \times (T - 20)$ (1b)

Figure 1: (a-b) Frequency shift of the traced L mode of siderite (a) and rhodochrosite (b) as a coupled function of P and 1 and their polynomial fitting surface. (c-d) P-T diagrams showing contours of the L mode Raman band of siderite (c) and rhodochrosite (d).