Isothermal recrystallization of fully metamict gadolinite
 $\left(\mathrm{REEFe}^{2+} \mathrm{Be}_{2} \mathrm{Si}_{2} \mathrm{O}_{10}\right)$ in argon studied using ${ }^{57} \mathrm{Fe}$ Mössbauer spectroscopy

DARIUSZ MALCZEWSKI AND MARIA DZIUROWICZ
University of Silesia
Presenting Author: dariusz.malczewski@us.edu.pl

Abstract

This study used ${ }^{57}$ Fe Mössbauer spectroscopy to track the annealing process for isothermal recrystallization of fully metamict gadolinite ($\mathrm{REEFe}^{2+} \mathrm{Be}_{2} \mathrm{Si}_{2} \mathrm{O}_{10}$) dated at 1795 Ma in argon at 973 and 1373 K . Ternary solid solutions of gadolinite ($\mathrm{REEFe}^{2+} \mathrm{Be}_{2} \mathrm{Si}_{2} \mathrm{O}_{10}$), calciogadolinite ($\mathrm{CaREE}_{2} \mathrm{Fe}^{3+} \mathrm{Be}_{2} \mathrm{Si}_{2} \mathrm{O}_{10}$) and hingganite ($\mathrm{REE}_{2} \mathrm{H}_{2} \mathrm{Be}_{2} \mathrm{Si}_{2} \mathrm{O}_{10}$), where REE means rare earth elements and yttrium, are collectively named gadolinites [1]. Radioactive elements in metamict minerals damage crystal structure primarily due to recoil nuclei from a-decay of ${ }^{238} \mathrm{U}$, ${ }^{232} \mathrm{Th},{ }^{235} \mathrm{U}$, and their daughter products. Metamict minerals are widely used in geochronology and can serve as natural analogues for the study of radiation effects in high-level nuclear waste (HLW). Changes in the ${ }^{57}$ Fe Mössbauer parameters vs. annealing temperature are sensitive indicators of the thermal recrystallization and can be used to determine activation energy for recrystallization [2]. The activation energy E_{A} recrystallization was determined based on the model of radiation damage in solid state nuclear track detectors (SSNTD) [3]. The measurements show that for isothermal annealing at 973 K , recrystallization occurs after 384 h , while for heating at 1373 K , complete recrystallization occurs after three minutes. Acknowledgments. This work was supported by the National Science Centre of Poland; grant no. 2018/29/B/ST10/01495. [1] Ito \& Hafner (1974) Am. Mineral, 59, 700-708. [2] Malczewski et al. (2020) J. Geosci, 65, 37-44. Nucl. Instr. and Meth, B12, 212-

218.
