Tungsten isotopic compositions of high-³He/⁴He Baffin Island lavas

JONAS KAARE-RASMUSSEN¹, DANIEL PETERS², HANIKA RIZO² AND FORREST HORTON³

 ¹Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering
²Carleton University
³Woods Hole Oceanographic Institution
Presenting Author: jkaaras@mit.edu

High ³He/⁴He ratios associated with some mantle plumes may be evidence of primordial reservoirs in the deep mantle that have been preserved since planetary accretion. Alternatively, the outer core may supply ³He-rich helium to mantle plumes [1]. To test this hypothesis, we analyzed the tungsten isotopic compositions of glass rims from eight pillow lavas on Baffin Island (Canada), where lavas have the highest known ³He/⁴He ratios of any terrestrial igneous rocks (50 times the atmospheric ratio) [2]. Tungsten isotopes are uniquely well suited for detecting core material in lavas because (a) tungsten is siderophile in metalsilicate systems and therefore abundant in the core and (b) the $^{182}W/^{184}W$ of the core is ~200 ppm lower than the mantle [1]. This isotopic difference arose because the decay of ¹⁸²Hf, an extinct radionuclide ($t_{1/2} = 8.9$ Myr) of the highly lithophile hafnium, produced radiogenic ¹⁸²W in the silicate portion of Earth after core formation while ¹⁸²Hf was extant. Determining the ¹⁸²W/¹⁸⁴W of Baffin Island lavas is important, not only because their ³He/⁴He ratios imply that their mantle source might be relatively primitive, but also because previous ¹⁸²W/¹⁸⁴W measurements of these lavas yielded anomalously high $\mu^{182}W$ $(+8.3 \pm 5.6 \text{ and } +48.4 \pm 4.6 \text{ [3]})$ relative to Earth's mantle (0), ocean island basalts (+3 to -18 [4]), and ancient rocks (+10 to +15 [5]). To our knowledge, these data represent the only positive ¹⁸²W anomalies measured in high-³He/⁴He lavas; elsewhere high ³He/⁴He and low ¹⁸²W/¹⁸⁴W ratios are negatively correlated, consistent with core-derived helium and tungsten in mantle plumes. The Baffin Island source, therefore, could provide unique insights into the chemical heterogeneities of the lower mantle.

[1] Rizo et al. (2019) *Geochem Prespec Lett.* 2, 6–11. [2] Stuart et al. (2003) *Nature* 424, 57–59. [3] Rizo et al. (2016) *Science* 352, 809–812. [4] Mundl et al. (2017) *Science* 356, 66–69. [5] Reimink et al. (2020) *G-Cubed* 21, 1–16.