An improved and automated CO₂-O₂ equilibration method for triple oxygen isotope analysis of CO₂

OLIVER JÄGER¹, JAKUB SURMA², FABIAN ZAHNOW¹ AND ANDREAS PACK³

¹Geoscience Center, Georg-August-Universität Göttingen
²Geoscience Center, Georg-August University Göttingen
³University of Göttingen

Presenting Author: oliver.jaeger@uni-goettingen.de

Triple oxygen isotope variations in carbonates are a novel tool in paleoclimatology. Small mass-dependent variations in ¹⁷O/¹⁶O and ¹⁸O/¹⁶O in carbonates provide insight into temperature dependent carbonate-water equilibration, thus providing a tool to identify post depositional alteration of geological samples and their formation temperatures. To resolve these small massdependent variations, uncertainties between 10-15 per meg in $\Delta^{17}O(=\ln(\delta^{17}O+1) - \ln(\delta^{18}O+1)*\lambda_{ref})$ are desired. Analyzing the triple oxygen isotope composition of CO₂ is challenging. Direct measurement of ¹⁷O/¹⁶O (¹²C¹⁷O¹⁶O) of CO₂ by means of conventional gas source isotope ratio mass spectrometry is restrained by isobaric interference of the much more abundant ¹³C¹⁶O₂ isotopologue. Recently, a new methodical approach based on equilibration of sample CO2 and O2 over hot Platinum was developed, demonstrating external reproducibility of $\Delta^{17}O_{CO2}$ smaller than 10 per meg [1,2]. Here we present a modified experimental setup of this method. To minimize potential isotopic exchange with hot glass surface we only heated the Platinum wire to a temperature of 900°C. We developed an automatized procedure to minimize external error sources. We show that full equilibration in δ^{18} O can be achieved between both gases after 15min of exchange. By measuring ${\rm ^{17}O/^{16}O}$ and $^{18}\text{O}/^{16}\text{O}$ of the reacted O₂ and $^{18}\text{O}/^{16}\text{O}$ of CO₂ before and after the reaction, Δ^{17} O in initial sample CO₂ is calculated with a mass balance equation [1]. The method was cross-checked by analysis of the educt and product CO2 on O fragments using a highresolution gas source mass spectrometer (Thermo Ultra). Some mass-independent effects were observed but could be kept reproducible.

[1] Mahata et al. (2013) Anal. Chem., 85, 6894-6901

[2] Mahata et al. (2016) Rapid Commun. Mass Spectrom., 30, 119-131