Trace oxygen shifts nitrogen metabolism and stimulates nitrogen reduction in low-oxygen marine waters.

JULIA HUGGINS¹, CÉLINE MICHIELS², RACHEL SIMISTER¹ AND SEAN CROWE¹

¹University of British Columbia

²SRK consulting

Presenting Author: julia.a.huggins@gmail.com

The oceans are currently losing O2, which may have dramatic effects on global climate and biodiversity. As the O2 in marine environments is depleted to near anoxia, microorganisms transition from O₂-based to several possible NO_x-based metabolisms: denitrification, anammox, and dissimilatory nitrite reduction to ammonium (DNRA). These three metabolisms have different geochemical outcomes, including nitrogen loss, carbon oxidation, and production of reduced compounds, which can, in turn, lead to changes in biological activity that may either exacerbate or mitigate O2 loss. The net consequences of marine O₂-loss may therefore depend on which NO_x⁻-based metabolisms engage as O₂ is depleted. The regulation of NO_x-based metabolisms under low O2 has received little attention, however, because it is generally assumed that NO_x⁻-reduction only occurs in the absence of O2. The threshold for anoxia is typically defined by an analytical detection limit of 1-2µM O2, despite evidence that NO_x⁻ reduction occurs both above and below this limit. Here, we use stable nitrogen isotope (¹⁵N) incubations of seawater collected from a model anoxic marine environment (Saanich Inlet, BC) to determine the rates and pathways of NO_xreduction under both anoxic conditions and within a highresolution range of low O_2 conditions (0.1 – 10µM). We show that multiple pathways of NOx-reduction can co-occur in the presence of low O2, and that these pathways have different activity thresholds between 4-8µM O2. Furthermore, we demonstrate that rates of denitrification and DNRA are highest under very low O_2 concentrations (0.1-2µM) rather than fully anoxic conditions, which is a previously unrecognized interaction between O2 and NOx-reduction. We also observed a trade-off between the rates of denitrification and DNRA across these very low O₂ concentrations, revealing interactions between competing pathways that would normally be overlooked in studies with low-resolution in O2. The activity of NOx⁻ reduction under environmental conditions that could support co-occuring N-oxidation raises the possibility of cryptic N-cycling and highlights the need for more complex process-rate measurements in ¹⁵N incubations. These findings have implications for the biogeochemical models that predict microbial metabolic responses to ocean deoxygenation and their ecological impacts.