Constraining polar amplification with a global compilation of planktonic for aminiferal $\delta^{18}O$

DANIEL E GASKELL¹, MATTHEW HUBER², CHARLOTTE L O'BRIEN³, GORDON N INGLIS⁴ AND PINCELLI M. HULL¹

¹Yale University
²Purdue University
³University College London
⁴National Oceanography Centre Southampton
Presenting Author: daniel.gaskell@yale.edu

Polar amplification - the phenomenon in which changes to the earth's climate tend to produce a larger change in temperature near the poles than the planetary average - is a primary concern in climate dynamics and in forecasting the effects of climate change. This amplification is observed in the geologic record as a decrease in the temperature difference between high and low latitudes under warmer climate states. However, the magnitude of equilibrium polar amplification predicted by climate models remains up to ~10°C lower than those derived from empirical compilations, and many of the existing proxy data remain temporally sparse or difficult to interpret. Here, we present a new global compilation of planktonic for minifera δ^{18} O values and use it to produce resolved estimates of polar and equatorial sea surface temperatures for the last 95 million years, accounting for diagenetic concerns. We find a strong and consistent pattern of polar amplification across all climate states over the past 95 Ma, with a polar amplification factor (PAR) of ~1.6. This equilibrium amplification is greater than that predicted by the current generation of global climate models (PAR \approx 1.3), but less extreme than that predicted by some prior proxy-based work (e.g., PAR \approx 2). Our results provide robust constraints for testing the efficacy of global climate models in predicting out-of-state climate systems of the future.