Insight into the order-disorder transition of irradiated pyrochlore solid solutions as potential nuclear waste forms

SHIRLEY CHANG¹, GORDON J THOROGOOD², MAX AVDEEV², FELIX BRANDT³, DIRK BOSBACH⁴, MIHAIL IONESCU⁵, DAVID SIMEONE⁶ AND SARAH C FINKELDEI¹

¹University of California, Irvine

²ANSTO

³Forschungszentrum Jülich, Germany

⁴Forschungszentrum Jülich GmbH

⁵Australian Nuclear Science and Technology Organization

⁶Structures, Properties and Modeling of Solids Laboratory

Presenting Author: shirlc6@uci.edu

Pyrochlores (A₂B₂O₇), a common mineral that can uptake large quantities of actinides, are studied as potential nuclear waste forms to immobilize radionuclides. Many have studied pyrochlore solid solutions where different cations on the A or B site are mixed to imitate waste loading of e.g. Pu within the pyrochlore structure. As a response to irradiation or selfirradiation, zirconate (B=Zr) pyrochlores are known to undergo an order/disorder phase transition into a disordered defect fluorite structure while titanate (B=Ti) pyrochlores become amorphous, however the dominating factor towards phase transition of each is unclear in a solid solution. To gain insight into order-disorder processes, the stress and strain of Nd₂Zr₂O₇ and Er₂Ti₂O₇ endmembers and a (ErNd)₂(TiZr)₂O₇ solid solution were examined. Prior and upon irradiation Nd₂Zr₂O₇ and Er₂Ti₂O₇ both showed no strain. With regards to (ErNd)₂(TiZr)₂O₇, it appears that the synthesis method employed was not sufficient to achieve a 50:50 ratio of A and B cations according to the diffraction results. However, the solid solution contained strain while Nd₂Zr₂O₇ and Er₂Ti₂O₇ was strain free. Further synthesis approaches of (ErNd)₂(TiZr)₂O₇ solid solution members are under way to understand the irradiation response of such mixed A and B site pyrochlores.