CO₂ storage and release in the North Atlantic Ocean during the last glacial period

ELOISE F.M. LITTLEY¹, JAMES W. B. RAE¹, ANDREA BURKE¹, DAVID J.R. THORNALLEY², WILLIAM R GRAY³, LAURIE MENVIEL⁴ AND SANDRA ARNDT⁵

¹University of St Andrews

²University College London

³Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL)

⁴Climate Change Research Centre, University of New South Wales

⁵Université Libre de Bruxelles

Presenting Author: efml@st-andrews.ac.uk

The striking similarity between atmospheric CO₂ and Antarctic temperature on millennial timescales have led many to credit the dominance of Southern Ocean processes as the primary source of CO₂ to the atmosphere during the last glacial period. However, closer examination of the phasing of these records has revealed that the peak of atmospheric CO₂ lagged Antarctic temperatures by more than 500 years. This raises the possibility that another process operating on these timescales may be acting to maintain high CO₂ and slow the pace of recovery. Here we present a high resolution boron isotope record of surface pCO₂ from the high latitude North Atlantic Ocean. Transient pulses of CO₂ >70 ppm above pre-event levels are associated with the abrupt transition from Heinrich stadials into an interstadial climate and correspond with peaks of atmospheric CO₂. Supported by model analysis, we attribute these to the sudden onset of vigorous deep overturning and suggest that this upwelled CO2-rich deep water, accumulated at depth during stadials, into the surface ocean. In combination with warming atmospheric temperatures, which decreased the solubility of CO₂ in the surface ocean, these pulse events likely weakened the North Atlantic carbon sink and prevented atmospheric CO₂ levels from falling despite Southern Hemisphere cooling. In the deep ocean, we link these major upwelling events to a sudden increase in export productivity. Interstadial peaks of redox sensitive elements in authigenic coatings of foraminifera indicate a sudden change in sediment conditions that cannot be associated with poor deep ocean ventilation. Simulations in a biogeochemical model of the sediment column suggest that these changes may reflect a change in organic carbon delivery.