Interrogating the Cretaceous-Palaeogene Li isotope crash with new records of foraminiferal δ⁷Li

MICHAEL J HENEHAN¹, BORIANA KALDERON-ASAEL², JAMES S. K. BARNET³, JAMES D WITTS⁴, JAMES W. B. RAE³, NOAH J. PLANAVSKY², PINCELLI M. HULL² AND FRIEDHELM VON BLANCKENBURG¹

¹GFZ German Research Centre for Geosciences
²Yale University
³University of St Andrews
⁴University of New Mexico

Presenting Author: henehan@gfz-potsdam.de

The dramatic drop in foraminiferal $\delta^7 \text{Li}$ across the Cretaceous-Palaeogene (K-Pg) boundary has puzzled geochemists since it was first observed by Misra and Froelich[¹]. Specifically, South Atlantic planktic foraminifera record a geologically-rapid drop of ~5 ‰, from ~28 ‰ in the latest Cretaceous to about ~23 ‰ in the earliest Paleocene, remaining at these values for ~ 10 Myr thereafter. Such a precipitous decline and sustained shift in the Li isotope composition of seawater ($\delta^7 \text{Li}_{sw}$) is difficult to explain by any conventional invocation of changing sources and sinks. Fundamentally though, if we cannot explain the drop at the K-Pg within a conventional Li-cycling framework, why then should we place faith in early Cenozoic light $\delta^7 \text{Li}_{sw}$ values as reflecting the global weathering regime?

Here we present new Li isotope measurements from multiple species of planktic and benthic foraminifera across the K-Pg boundary, and through the Paleocene, to further interrogate this problem. While our planktic foraminiferal δ^7 Li values show a shift in δ^7 Li across the K-Pg (albeit smaller in magnitude than was seen by ref. [¹]), benthic foraminiferal δ^7 Li shows very little change. Indeed, Paleocene benthic δ^7 Li values are similar to those recorded in Holocene epifaunal benthic foraminifera[²], and are 2-3 ‰ heavier than coeval planktic foraminifera. We discuss the possible reasons for this mismatch between planktic and benthic foraminifera in the context of non-seawater controls on carbonate δ^7 Li, and the implications of these new data for our understanding of Cenozoic geochemical cycling.

[1] Misra & Froelich (2012), Science 335, 818-823.

[2] Roberts et al. (2018), Geochim. Cosmochim. Acta 236, 336–350.