Impacts of glacial retreat on benthic iron supply using a radium/thorium disequilibrium approach

AMBER ANNETT¹, PINGHE CAI², JAMES WILLIAMS³, DIPANJU BURAGOHAIN¹, RHIANNON JONES¹, OLIVER G. FLANAGAN¹, MEHUL VORA⁴, NADESCHA ZWERSCHKE⁵, CHESTER SANDS⁵, DAVID BARNES⁵, JAMES SCOURSE⁶, XIANGMING SHI⁷, QINGQUAN HONG², LIN WEI² AND XUEYING SHI²

¹University of Southampton

²Xiamen University

³Cardiff University

⁴Rutgers, The State University of New Jersey

⁵British Antarctic Survey

⁶Exeter University

⁷University of Connecticut

Presenting Author: a.l.annett@soton.ac.uk

The Southern Ocean has absorbed ~30% of anthropogenic carbon dioxide emissions to date. Biological components of this uptake are limited chiefly by scarcity of iron (Fe), and in the lowdust environment of the Southern Ocean the main sources of Fe are shelf sediments and glacial inputs. Along the Western Antarctic Peninsula (WAP) over 87% of glaciers are retreating, with delivery of glacial Fe to surface waters expected to increase. Drivers of sedimentary Fe supply are poorly constrained, but high rates of bacterial remineralisation and resuspension of Ferich shallow sediments play a major role in sustaining the high Fe inventory of deep shelf waters. Fine particulate material in meltwater can scavenge Fe, efficiently shuttling Fe to the sediment. However, increased delivery of particulates can negatively affect benthic organisms via mass accumulation rate and high turbidity. Consequently, changes in composition, bioturbation and bioirrigation of the sediment have the potential to affect remineralisation rates, as well as speciation and bioavailability of Fe. We used the novel ²²⁴Ra/²²⁸Th disequilibrium approach to assess how deglaciation affects sedimentary Fe release at three rapidly retreating WAP glacier fronts WAP.

Porewater profiles of Fe (and other bioactive metals and nutrients) were combined with Ra flux derived from the deficit of soluble ²²⁴Ra with respect to its rate of production by parent isotope ²²⁸Th in surface sediments. While Fe profiles reflected local geological composition and oxygen consumption, Ra/Th-derived Fe fluxes revealed a consistent trend of reduced Fe flux with glacier front distance, suggesting that continued glacial retreat may reduce Fe supply. Similar trends were seen in fluxes of other metals (manganese, lead) but with greater overall range and variability between sites. These results are discussed in the context of sediment characteristics, benthic assemblages, and macronutrient profiles to predict changes in biogeochemical cycling as climate change continues.