Impacts of glacial retreat on benthic iron supply using a radium/thorium disequilibrium approach

AMBER ANNETT1, PINGHE CAI2, JAMES WILLIAMS3, DIPANJU BURAGOHAIN1, RHIANNON JONES1, OLIVER G. FLANAGAN1, MEHUL VORA4, NADESCHA ZWERSCHKE5, CHESTER SANDS5, DAVID BARNES5, JAMES SCOURSE6, XIANGMING SHI7, QINGQUAN HONG2, LIN WEI2 AND XUEYING SHI2

1University of Southampton
2Xiamen University
3Cardiff University
4Rutgers, The State University of New Jersey
5British Antarctic Survey
6Exeter University
7University of Connecticut

Presenting Author: a.l.annett@soton.ac.uk

The Southern Ocean has absorbed ~30% of anthropogenic carbon dioxide emissions to date. Biological components of this uptake are limited chiefly by scarcity of iron (Fe), and in the low-dust environment of the Southern Ocean the main sources of Fe are shelf sediments and glacial inputs. Along the Western Antarctic Peninsula (WAP) over 87% of glaciers are retreating, with delivery of glacial Fe to surface waters expected to increase. Drivers of sedimentary Fe supply are poorly constrained, but high rates of bacterial remineralisation and resuspension of Fe-rich shallow sediments play a major role in sustaining the high Fe inventory of deep shelf waters. Fine particulate material in meltwater can scavenge Fe, efficiently shuttling Fe to the sediment. However, increased delivery of particulates can negatively affect benthic organisms via mass accumulation rate and high turbidity. Consequently, changes in composition, bioturbation and bioirrigation of the sediment have the potential to affect remineralisation rates, as well as speciation and bioavailability of Fe. We used the novel 224Ra/228Th disequilibrium approach to assess how deglaciation affects sedimentary Fe release at three rapidly retreating WAP glacier fronts WAP.

Porewater profiles of Fe (and other bioactive metals and nutrients) were combined with Ra flux derived from the deficit of soluble 224Ra with respect to its rate of production by parent isotope 228Th in surface sediments. While Fe profiles reflected local geological composition and oxygen consumption, Ra/Th-derived Fe fluxes revealed a consistent trend of reduced Fe flux with glacier front distance, suggesting that continued glacial retreat may reduce Fe supply. Similar trends were seen in fluxes of other metals (manganese, lead) but with greater overall range and variability between sites. These results are discussed in the context of sediment characteristics, benthic assemblages, and macronutrient profiles to predict changes in biogeochemical cycling as climate change continues.