A self-shielding origin for the ¹⁵N enrichment in meteoritic amino acids

JAMES LYONS AND JASMINE GARANI

Arizona State University Presenting Author: jimlyons@asu.edu

Introduction: Meteoritic amino acids are typically enriched by ~ 50 - 200 ‰ in δ^{15} N, measured relative to Earth atmosphere N₂ [1]. However, this does not capture the full magnitude of the enrichment. Measurements of N isotopes in solar wind samples collected by the NASA Genesis mission reveal that inner solar system objects, including Earth's atmosphere, are enriched by ~ 400 ‰ compared to the bulk Sun [2]. Therefore, the enrichment in meteoritic amino acids, relative to the starting material from which the solar system formed (the bulk Sun), is ~ 450 – 600 ‰. We propose here that photochemical self-shielding of gas phase N₂ is responsible for producing such massive ¹⁵N enrichments.

Methods: We have completed initial modeling of N isotopes in a vertically-mixed solar nebula model that includes N₂ self-shielding and HCN and NH₃ formation in a network of over 700 reactions involving ~ 100 species [3]. We find that NH_{3gr} (NH₃ on dust grains) is highly enriched in ¹⁵N, with delta-values relative to Earth atmosphere ranging up to +800 ‰, demonstrating that N₂ self-shielding can easily achieve the ¹⁵N enrichments observed in the inner solar system.

Amino acid formation: Amino acids in meteorites are formed primarily by aqueous phase reactions in their meteorite parent bodies. Strecker synthesis, Michael addition, and reductive amination all involve reaction of a carbonyl or nitrile with NH_3 [1]. NH_3 that is derived by grain formation and N_2 self-shielding in the solar nebula will contribute its substantial ¹⁵N enrichment to amino acids formed by these formation mechanisms.

Conclusions: We argue here that the ¹⁵N enrichment measured in meteoritic amino acids can be explained as a result of NH_3 production from N atoms liberated during N₂ self-shielding in the solar nebula. We conclude that photochemistry in the solar nebula was likely an important contributor to the inventory of prebiotic molecules in early Earth environments.

References: [1] Elsila J. et al. (2012) *MAPS*, 47, 1517. [2] Furi E. and Marty B. (2015) *Nat. Geo.*, 8, 515. [3] Garani J. and Lyons J. R. (2021) 52nd LPSC, abstract # 2571.