Detection limits for atmospheric CO₂ sources with specific Δ_{47} signals under two component mixing conditions

HENRIK ECKHARDT AND MARTINA SCHMIDT

Heidelberg University

Presenting Author: henrik.eckhardt@iup.uni-heidelberg.de

In many studies of the atmospheric carbon cycle and its exchange with other reservoirs, CO₂ mole fraction, δ^{13} C and δ^{18} O are widely used to partition between different processes contributing to sources or sinks. Δ_{47} is mainly used for applications as a paleothermometer, but was also proposed by [3] and [1], to be used for atmospheric CO₂ studies. The temperature dependency of Δ_{47} gives the possibility to differentiate between high temperature (e.g. by burning fossil fuels) and low temperature sources (e.g. soil respiration). In urban or local process studies, $\Delta 47$ can therefore support conventional tracers such as δ^{13} C or δ^{18} O. The combination of different tracers offers the possibility to better restrict the results in this often underdetermined system and thus to interpret them.

Here we present a theoretical study using synthetic data which examines the effect of mixing different source signals into an ambient air mass. The information gained from Δ_{47} measurements is examined under current and possibly improved measurement uncertainties. In the course of this, various CO₂ enhancements caused by different types of sources are simulated and the limits for meaningful measurements are studied. Furthermore, it is shown how to calculate Δ_{47} under mixing conditions without producing nonlinearities, which have occurred in previous studies^{[3], [1], [2], [4]}. We will present examples where ignoring this effect may lead to wrong conclusions. In this feasibility study we show, with synthetic data, how regular atmospheric Δ_{47} measurements could be used, and demonstrate their limits.

[1] Affek & Eiler (2006), Geochimica et Cosmochimica Acta 70.1, 1–12.

[2] Defliese & Lohmann (2015), Rapid Communications in Mass Spectrometry 29.9, 901–909.

[3] Éiler & Schauble (2004), Geochimica et Cosmochimica Acta 68.23, 4767–4777.

[4] Laskar, Mahata & Liang (2016), Environmental science & technology 50.21, 11806–11814.