Drivers of carbon variations in the **Eocene**

ELENI ANAGNOSTOU 1 , DONALD PENMAN 2 , THOMAS WESTERHOLD 3 , TALI LEA BABILA 4 AND GUILLAUME FONTORBE 1

¹GEOMAR Helmholtz Centre for Ocean Research Kiel

Presenting Author: eanagnostou@geomar.de

Reconstructions of atmospheric and oceanic chemistry in the Eocene (56-34 Ma) has been a great challenge in the paleoclimate community, because of the paucity of well-preserved sedimentary archives with well-tuned age models, and the limited availability of refined geochemical tracers. Here, we summarize our recent compilations of seawater pH and derived atmospheric carbon dioxide concentrations (CO₂) from planktonic foraminiferal $\delta^{11}B$ [1], alongside other marine-derived CO₂ records and recent benthic foraminiferal $\delta^{13}C$ and $\delta^{18}O$ compilations [2]. We then explore their relationship to variations in weathering, volcanism, ocean circulation, organic carbon burial and recent box model calculations, to identify the key mechanisms driving changes in CO₂ and climate (i.e. temperature) through the Eocene.

- [1] Anagnostou, et al., (2020), Nature Comm 11, 1-9.
- [2] Westerhold, et al., (2020), Science 369, 1383-1387.

²Utah State University

³University of Bremen

⁴University of Southampton