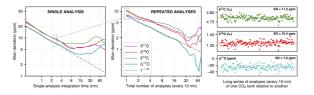
Direct, Precise Measurements of Oxygen-17 Anomalies in CO2 Using VCOF-CRDS

JUSTIN CHAILLOT¹, SAMIR KASSI¹, MATHIEU CASADO², AMAELLE LANDAIS³ AND MATHIEU DAËRON⁴

¹Laboratoire Interdisciplinaire de Physique ²Alfred Wegener Institute ³LSCE - Institut Pierre Simon Laplace

⁴Laboratoire des Sciences du Climat et de l'Environnement


Presenting Author: justin.chaillot@univ-grenoble-alpes.fr

Triple oxygen isotope analyses of CO2 are a challenge for mass spectrometers because of isobaric interference between 16O13C16O and 16O12C17O. Using spectroscopic methods, each CO2 isotopologue is uniquely described by its distribution of masses and roto-vibrational frequencies, potentially providing simple, direct, non-destructive measurements of δ 13C, δ 18O and Δ 17O on small samples of CO2. It remains technically challenging, however, to constrain istopologue abundances from infra-red absorption spectra with precision levels of <10 ppm, as required by many geochemical applications. Here we report the latest results documenting the repeatability, linearity and accuracy of Δ 17O measurements by V-shaped Cavity Optical Feedback Cavity Ring-Down Spectroscopy (VCOF-CRDS), a novel technique combining the excellent absorption linearity of CRDS with state-of-the art spectral stability and selectivity [1,2].

By using different laser diodes, all locked to a single ultrastable V-shaped cavity, we are able to select optimal absorption lines to probe each isotopologue of interest. Our instrument currently performs simultaneous analyses of δ 13C, δ 18O and δ 17O with external repeatabilities of 10 ppm and Δ 17O at 8 ppm by alternating 150-s-long measurements between unknown samples and a working reference gas, with each unknown-tounknown cycle requiring 10 min. Analyses of one pressurized tank of CO2 against another one over long time series display excellent Δ 17O stability (SD = 7.6 ppm) at time scales exceeding 24 h (155 analyses). We will also report the results of our ongoing tests of linearity and accuracy, based on carbonate reference materials and CO2 isotopically equilibrated with independently-constrained waters with known Δ 17OVSMOW values ranging from -95 to +32 ppm.

[1] T. Stoltmann, M. Casado, M. Daëron, A. Landais & S. Kassi (2017). Direct, Precise Measurements of Isotopologue Abundance Ratios in CO2 Using Molecular Absorption Spectroscopy : Application to Δ 170. Analytical Chemistry. 10.1021/acs.analchem.7b02853

[2] S. Kassi, T. Stoltmann, M. Casado, M. Daëron & A. Campargue (2018). Lamb dip CRDS of highly saturated transitions of water near 1.4 μ m. The Journal of Chemical Physics. 10.1063/1.5010957

