Global patterns in oceanographic influences on ¹⁰Be deposition rates to the seafloor

JENNIFER L MIDDLETON¹, GISELA WINCKLER¹, JOERG SCHAEFER¹, FRANK PAVIA², ROBERT ANDERSON¹, ROSEANNE SCHWARTZ¹, YUXIN ZHOU¹ AND CHRISTOPHER KINSLEY³

¹Columbia University
²California Institute of Technology
³Massachusetts Institute of Technology
Presenting Author: jennym@ldeo.columbia.edu

The deposition rate of meteoric beryllium-10 (¹⁰Be) in marine sedimentary records provides constraints on variations in geomagnetic field intensity over the past ~10 million years. However, dynamic processes within the water column, such as particle scavenging and water mass transport, may increase or decrease the local rate of ¹⁰Be deposition to the seafloor relative to its atmospheric production rate. These oceanographic effects on local ¹⁰Be deposition can vary with climatic variability and complicate geomagnetic interpretations of sedimentary ¹⁰Be data. A detailed characterization of oceanographic influences on ¹⁰Be deposition will enable systematic corrections for such effects in the sedimentary record and reduce the uncertainty associated with ¹⁰Be-derived geomagnetic paleointensity records. Such characterization may even enable the utilization of sedimentary ¹⁰Be as a particle flux proxy, analogous to the shorter-lived thorium-230 (230Th) and protactinium-231 (231Pa) proxies, over intervals for which variations in geomagnetic field intensity are independently constrained.

We present new ²³⁰Th-normalized ¹⁰Be deposition records for three sediment cores in the Equatorial and North Pacific and evaluate these data within the oceanographic context of a global compilation of ²³⁰Th-normalized ¹⁰Be deposition rate records. The ¹⁰Be data are compared with lithogenic and opal deposition rate records, where available, to investigate scavenging effects. We observe a first order correlation between lithogenic flux (constrained using complementary thorium-232 data) and ¹⁰Be deposition. However, the slope of this relationship (i.e., the ¹⁰Be/²³²Th flux ratio) varies by ocean basin, with North Atlantic records exhibiting lower ¹⁰Be/²³²Th flux ratios than those from the Southern Ocean and the North Pacific. Sediments with high opal/232Th ratios also exhibit higher ¹⁰Be/232Th flux ratios, suggestive of additional ¹⁰Be scavenging by opal, yet opal scavenging effects are insufficient to explain the basin-scale differences in ¹⁰Be deposition. Rather, we propose that the high ¹⁰Be/²³²Th flux ratios observed in Southern Ocean and Pacific sediments, relative to Atlantic sediments, result from a general increase in water column inventories of ¹⁰Be as one progresses along the transport pathway from the North Atlantic to the Pacific. This hypothesis is supported by seawater data indicating higher ¹⁰Be concentrations in the Pacific relative to the Atlantic.