Controlling CaCO₃ particle size with {Ca²⁺}:{CO₃²⁻} ratios in aqueous environments

SERGĚJ Y. M. H. SEEPMA¹, SERGIO E. RUIZ-HERNANDEZ¹, GERNOT NEHRKE², KARLINE SOETAERT³, ALBERT P. PHILIPSE¹, BONNY W. M. KUIPERS¹ AND MARIETTE WOLTHERS⁴

¹Utrecht University

²Alfred-Wegener Institut: Helmholtz-Zentrum für Polar- und Meeresforschung

³Royal Netherlands Institute of Sea Research (NIOZ)

⁴Earth Sciences, Utrecht University

Presenting Author: s.y.m.h.seepma@uu.nl

The impact of stoichiometry $(r_{aq} = \{Ca^{2+}\}: \{CO_3^{2-}\})$ on the new formation and subsequent growth of CaCO₃ is important, as most natural waters and industrial crystallization processes proceed nonstoichiometrically. Therefore, we investigated in a broad range $(10^4 < r_{aq} < 10^{-4})$ the effect of solution stoichiometry at various, initially constant degrees of supersaturation ($30 < \Omega_{cal} <$ 200; where $\Omega_{cal} = \{Ca^{2+}\}\{CO_3^{2-}\}/K_{sp}\}$, pH of 10.5 ± 0.27, and ambient temperature and pressure [1]. At $r_{aq} = 1$ and $\Omega_{cal} < 150$, dynamic light scattering (DLS) showed that ion adsorption onto nuclei (1 - 10 nm) was the dominant mechanism. At higher supersaturation levels, no continuum of particle sizes is observed with time, suggesting aggregation of prenucleation clusters into larger particles as dominant growth mechanism. At $r_{ac} \neq 1$ ($\Omega_{cal} =$ 100), prenucleation particles remained smaller than 10 nm for up to 15 hours. Cross-polarized light in optical light microscopy was used to measure the time needed for new particle formationand growth to at least 20 μ m. This precipitation time depends strongly and asymmetrically on r_{aq} . Complementary Molecular Dynamics (MD) simulations confirm that r_{aq} affects CaCO₃ nanoparticle formation substantially. At $r_{aq} = 1$ and $\Omega_{cal} >> 1000$, the largest nanoparticle in the system had a 21 - 68% larger gyration radius after 20 ns of simulation time than in nonstoichiometric systems. Our results imply that, besides Ω_{cal} , stoichiometry affects particle size and persistence, growth and ripening time towards µm-sized crystals. Our results help to improve understanding, prediction and formation of CaCO₃ in geological, industrial and geo-engineering settings.

[1] Seepma, Ruiz-Hernandez, Nehrke, Soetaert, Philipse, Kuipers & Wolthers (2021), Accepted for publication in *Crystal Growth & Design*. DOI: 10.1021/acs.cgd.0c01403

<u>Caption Figure</u>: The relative number of particles plotted against the size of particle at different stoichiometric conditions at an $\Omega_{cal} = 100$ for the first hour of the precipitation reaction (adapted from [1])

