Thermodynamic model for H₂-H₂O-NaCl system

ELENA F. BAZARKINA^{1,2}, NIKOLAY N. AKINFIEV^{3,4}, YURI V. SHVAROV⁵, ALEXANDER V. ZOTOV³ AND TERRY SEWARD⁶

¹Institut Neel ²HZDR ³IGEM RAS ⁴MGRI ⁵Moscow State University ⁶Victoria University of Wellington Presenting Author: elena.bazarkina@esrf.fr

The knowledge of hydrogen (H₂) properties in hydrothermal fluids under high T-P is indispensable for estimations of H₂ reservoirs in the middle and lower crust of the Earth [1]. These data can also help in the development of new H2-based sources of energy. However, our knowledge of water-hydrogen solubilities, the effect of electrolytes (e.g., NaCl, KCl), and phase relations at high T-P-xH₂ remains poor, the robust models are missing. Based on available experimental data, we propose a new thermodynamic model which attempts to describe phase boundaries, solubilities, and fugacities in an H2-H2O-NaCl system up to 600°C and 3 kbar. Under vapor-liquid immiscibility (near H2O saturated vapor pressure and under high pressures and high H₂ concentrations, as well as in the wide T-P range in the presence of NaCl), two separate equations of state for the liquid and the vapor phases are proposed. For the liquid phase, H2-H2O system, our model is based on highly precise data for pure H₂ and pure H2O, Henry's law constants, and the vapor-liquid partitionong for H₂, our estimations of Setchenov coefficients of H₂, and Akinfiev and Diamond approach [2]. For the vapor phase, the improved Peng-Robinson approach was employed.

Compositions of vapor and liquid phases in $NaCl-H_2O-H_2$ systems calculated using our model are in good agreement with data of Seward and Franck [3], Kishima [4], and Ding and Seyfred [5].

This study was supported by ANR H2KOLA and RSF (Grant 20-17-00184).

[1] Bazarkina et al. (2020) *Elements* 16, 33-38.

[2] Akinfiev & Diamond (2003) GCA 67, 613-629.

[3] Seward & Franck (1981) Ber. Bunsenges. Phys. Chem. 85, 2.

[4] Kishima (1989) GCA 53, 2143-2155.

[5] Ding & Seyfried (1990) In: EOS American Geophysical Union. p. 1680.