Thermodynamic model for H_2-H_2O-NaCl system

ELENA F. BAZARKINA1,2, NIKOLAY N. AKINFIEV3,4, YURI V. SHVAROV5, ALEXANDER V. ZOTOV3 AND TERRY SEWARD6

1Institut Neel
2HZDR
3IGEM RAS
4MGRI
5Moscow State University
6Victoria University of Wellington

Presenting Author: elena.bazarkina@esrf.fr

The knowledge of hydrogen (H_2) properties in hydrothermal fluids under high T-P is indispensible for estimations of H_2 reservoirs in the middle and lower crust of the Earth [1]. These data can also help in the development of new H_2-based sources of energy. However, our knowledge of water-hydrogen solubilities, the effect of electrolytes (e.g., NaCl, KCl), and phase relations at high T-P-xH_2 remains poor, the robust models are missing. Based on available experimental data, we propose a new thermodynamic model which attempts to describe phase boundaries, solubilities, and fugacities in an H_2-H_2O-NaCl system up to 600°C and 3 kbar. Under vapor-liquid immiscibility (near H_2O saturated vapor pressure and under high pressures and high H_2 concentrations, as well as in the wide T-P range in the presence of NaCl), two separate equations of state for the liquid and the vapor phases are proposed. For the liquid phase, H_2-H_2O system, our model is based on highly precise data for pure H_2 and pure H_2O, Henry’s law constants, and the vapor-liquid partitioning for H_2, our estimations of Setchenov coefficients of H_2 and Akinfiev and Diamond approach [2]. For the vapor phase, the improved Peng-Robinson approach was employed. Compositions of vapor and liquid phases in NaCl-H_2O-H_2 systems calculated using our model are in good agreement with data of Seward and Franck [3], Kishima [4], and Ding and Seyfried [5].

This study was supported by ANR H2KOLA and RSF (Grant 20-17-00184).