Application of the $\delta^{44 / 40} \mathrm{Ca}-\delta^{88 / 86} \mathrm{Sr}$ multi-proxy to the Shuram Carbon Isotope Excursion

NILOUFAR LILLY SARVIAN ${ }^{1}$, ANDREW D JACOBSON ${ }^{1}$, MATTHEW HURTGEN ${ }^{1}$, MAGDALENA OSBURN ${ }^{1}$ AND KRISTIN BERGMANN ${ }^{2}$
${ }^{1}$ Northwestern University
${ }^{2}$ Massachusetts Institute of Technology
Presenting Author: nilou@earth.northwestern.edu

The Ediacaran-aged Shuram Excursion is the largest negative carbon isotope ($\delta^{13} \mathrm{C}$) excursion in Earth's history. The origin of this excursion, however, remains enigmatic. Although negative shifts occur globally, some studies have posited a diagenetic origin, while others suggest a primary change in marine DIC reflecting major carbon cycle disruption. Here, we apply a new approach, the " $\delta^{44 / 40} \mathrm{Ca}-\delta^{88 / 86} \mathrm{Sr}$ multi-proxy" to this problem, as it offers powerful resolution for differentiating between hypotheses.
Marine carbonate stable calcium and strontium isotope ratios $\left(\delta^{44 / 40} \mathrm{Ca}\right.$ and $\left.\delta^{88 / 86} \mathrm{Sr}\right)$ are each sensitive to mass-dependent fractionation and reservoir mixing. Multiple explanations often arise when marine $\delta^{44 / 40} \mathrm{Ca}$ and $\delta^{88 / 86} \mathrm{Sr}$ values are interpreted separately, but applied together, the $\delta^{44 / 40} \mathrm{Ca}-\delta^{88 / 86} \mathrm{Sr}$ multiproxy can differentiate signals from mass-dependent fractionation versus those from various forms of end-member mixing, including seawater isotopic change and diagenetic overprinting. Analysis of $\delta^{88 / 86} \mathrm{Sr}$ includes measurement of traditional radiogenic Sr isotope ratios $\left.\left({ }^{87} \mathrm{Sr}\right)^{86} \mathrm{Sr}\right)$, which provide additional constraints on mixing.
Using high-precision TIMS techniques, we apply this proxy to the Shuram Excursion recorded in carbonate rocks composing the Huqf Supergroup of Oman, which was deposited approx. 547 $-578 \mathrm{Ma}^{5}$. We will present results from 20 carbonate rocks that span the Khufai, Shuram, and Buah formations. With our interpretive framework, we aim to understand the origin of $\delta^{44 / 40} \mathrm{Ca}$ and $\delta^{88 / 86} \mathrm{Sr}$ signals in Huqf Supergroup carbonates, and, by extension, test hypotheses surrounding the origin of the Shuram Excursion.
[1]Böhm et al. (2012) [2]Shao et al. (2021) [3]Wang et al. (2021) [4]Voigt et al. (2015) [5]Rooney et al. (2020)

