Copper isotope systematics in seafloor hydrothermal systems: A case study of TAG and Snake Pit fields, Mid-Atlantic Ridge

YANNICK DJEDJROH1, OLIVIER ROUXEL1, CÉCILE CATHALOT1, LUCIE PASTOR2, LAETITIA LEROY1, AUDREY BOISSIER1, YOAN GERMAIN1, SANDRINE CHERON1, EWAN PELLETER1, FLORIAN BESSON3 AND MARIE ANNE CAMBON4

1IFREMER, centre de Brest, REM/GM/LCG
2Ifremer, centre de Brest, REM/EEP/LEP
3IFREMER, centre de Brest, REM/GM/CTDI
4IFREMER, centre de Brest, REM/EEP/LMEE

Presenting Author: ydjedjro@ifremer.fr

Seafloor hydrothermal systems play a significant role in deep ocean metal budgets. Copper (Cu) is a metal of economic interest with potentially toxicity to deep sea biological organisms. Due to its non-conservative property during hydrothermal fluid - seawater mixing, it remains unclear whether hydrothermal vents represent an important local or global source of Cu to the deep ocean. Here we present a comprehensive dataset of Cu isotope composition of high-temperature vents (fluids and sulfide deposits), low-temperature diffuse vents, hydrothermal plume fall-out and metalliferous sediments. This work focuses on samples which were collected in the Mid-Atlantic Ridge, at the TAG and Snake Pit hydrothermal fields during BICOSE 1&2 cruises (Ifremer). At TAG, the combination of major and trace element geochemistry and Cu-isotope values of proximal oxidized sediments ($\delta^{65}\text{Cu}$ from 0.03 to 0.4‰) compared to high-temperature vent fluids ($\delta^{65}\text{Cu}$ -0.14 et 0.37 ‰), and plume fall-out materials collected in sediment traps ($\delta^{65}\text{Cu}$ -0.24 to 0.07 ‰) indicates that quantitative sulfide oxidation within sediments does not impact Cu isotope signatures. Sulfide-rich metalliferous sediments from Moose site (Snake Pit) display Cu isotopic values ($\delta^{65}\text{Cu}$ 0.50 to 0.85‰) in the range of both high temperature hydrothermal fluids ($\delta^{65}\text{Cu}$ 0.53 to 1.01 ‰), and chalcopyrite from chimneys ($\delta^{65}\text{Cu}$ 0.55 to 1.08 ‰). This suggests that Cu-isotopes are not significantly fractionated from source to sink. However, two sediment cores from Beehive (Snake Pit) show variability of Cu isotopes ($\delta^{65}\text{Cu}$ -0.17 to 1.37 ‰ and 0.04 to 0.89 ‰) which is interpreted as rapid changes of Cu sources to the sediment rather than post-depositional modification. Study of sediment porewaters further suggest that diagenesis of hydrothermal sediments may represent a significant source of fractionated Cu to overlying seawater.