Experimental investigation of factors controlling aragonite crystallization

MARIA CRISTINA CASTILLO ALVAREZ¹, KIRSTY PENKMAN², ROLAND KROGER², ADRIAN A FINCH¹, MATTHIEU CLOG³ AND NICOLA ALLISON¹

¹University of St. Andrews ²University of York ³SUERC

Presenting Author: mcca1@st-andrews.ac.uk

Ocean acidification reduces seawater pH, shifts the dissolved inorganic carbon (DIC) equilibrium (increasing $[HCO_3^{-1}]$ and decreasing $[CO_3^{2^-}]$) and reduces the calcification rates of many calcareous marine organisms. Aragonite and calcite precipitation rates are determined by the seawater saturation state, Ω (reflecting the availability of $CO_3^{2^-}$ and Ca^{2^+} for incorporation in the CaCO₃ precipitate). However, both aqueous HCO₃⁻ and $CO_3^{2^-}$ are inferred to attach to growing calcite crystal surfaces [1] and HCO₃⁻ is observed in both coral and synthetic aragonite [2]. Understanding the roles of both HCO₃⁻ and $CO_3^{2^-}$ in CaCO₃ precipitation is key to predicting the responses of calcareous organisms to ocean acidification.

We are conducting experiments to study aragonite precipitation at a constant saturation state ($\Omega = 4, 7, 10, 13$ or 18) over varying seawater pH levels (pH= 8.337, 8.545 and 8.727). These changes in pH were accompanied by changes in [DIC] (850-7800 µmol kg⁻¹) and, subsequently, [HCO₃⁻] but [CO₃²⁻] remains essentially unchanged. All experiments were conducted at T = 25±0.1°C, salinity = 34 and using an aragonite seed. We correlated aragonite precipitation rates with concentrations of CO₃²⁻ and HCO₃⁻ ions. Our results show that the precipitation rate of aragonite reflects the CO₃²⁻ ion concentrations (fig 1) while HCO₃⁻ ion concentrations has a negligible effect on precipitation rate (fig 2). This implies HCO₃⁻ is not a substrate for aragonite formation and has important implications on the interpretation of O isotope proxies.

Figure 1 shows the precipitation rate of aragonite as a function of carbonate ion concentration. Different saturation states are denoted by different symbols: yellow diamonds show $\Omega = 4$, blue squares $\Omega = 7$, purple triangles $\Omega = 10$, green squares $\Omega = 13$ and orange circles $\Omega = 18$

Figure 2 shows the precipitation rate of aragonite as a function of bicarbonate ion concentration. Different saturation states are denoted by different symbols: yellow diamonds show $\Omega = 4$, blue squares $\Omega = 7$, purple triangles $\Omega = 10$, green squares $\Omega = 13$ and orange circles $\Omega = 18$