Heterogeneous mineral nucleation controls the thermodynamic equilibria in multiphase inclusions

NADIA MALASPINA1, MARCELLO CAMPIONE2, MATTEO ALVARO3, MATTIA LA FORTEZZA4, SIMONE TUMIATI5 AND MARCO SCAMBELLURI6

1Università Milano - Bicocca DISAT_CSS1
2University of Milano-Bicocca
3University of Pavia
4University of Genova
5University of Milan
6Distav

Presenting Author: nadia.malaspina@unimib.it

Multiphase inclusions are microenvironments where the interaction between the fluid and the host mineral might follow crystallisation pathways unpredictable by simple equilibrium thermodynamics.

The ultrahigh pressure (UHP) garnet-orthopyroxenites from the Maowu Ultramafic Complex (China) derive form metasomatic interaction of mantle rocks with siliceous fluids. In these rocks, garnet hosts solid multiphase primary inclusions consisting of spinel, amphibole, chlorite and talc, where spinel and chlorite are in epitaxial relationship with garnet [1]. Starting from this case study, [2] demonstrated that inclusions in mantle garnet filled with slab-derived fluids can re-equilibrate to a pyrope + spinel + chlorite assemblage at UHP conditions by a dissolution-precipitation mechanism, triggered by a dilute fluid. Similar inclusion/host relations are recorded by magnetite-bearing multiphase inclusions hosted in metamorphic olivine of harzburgites from the Almirez Complex (Spain). In this latter occurrence inclusions are interpreted as remnants of an aqueous subduction-zone fluid produced by dehydration of former serpentinite [3]. Microfocus single-crystal X-ray diffraction demonstrated that the preferential crystallographic orientation relationships between the olivine host and the magnetite inclusion results from epitaxial growth of magnetite on olivine [4].

These relationships play a fundamental role in favouring the heterogeneous nucleation of spinel on garnet and of magnetite on olivine. Epitaxy requires that interface processes like heterogeneous nucleation play a role on the dynamics of phase nucleation and in attainment of thermodynamic equilibrium. This interaction might be so strong that mineral nucleation can occur even at undersaturation of the fluids. If applied to larger scales than the micrometric fluid inclusion-host system, the kinetic process described here suggests that fluid/mineral interfaces can play a key role in driving crystallization of neoblastic minerals.

References: