Illuminating the long-term storage of fluid-hosted volatiles in the SCLM from ³He/⁴He, major- and trace elements in global mantle xenolith suites

JAMES C. CROSBY¹, SALLY A. GIBSON¹, FIN STUART², TEAL R. RILEY³ AND LUIGIA DI NICOLA⁴

¹University of Cambridge ²Rankine Avenue ³British Antarctic Survey ⁴Scottish Universities Environmental Research Centre Presenting Author: jcc85@cam.ac.uk

Helium isotopes are a powerful tracer of mantle sources; deep mantle ${}^{3}\text{He}/{}^{4}\text{He}$ (> 10 Ra) are significantly higher than convecting depleted upper mantle (8 ± 1 Ra), and continental crust (<1 Ra). Far less is known about the origin, and temporal and spatial variability, of He in the sub-continental lithospheric mantle (SCLM). Here we integrate fluid-hosted He isotopes with lattice-hosted major- and trace elements in SCLM samples to investigate the source and effect of depletion and enrichment.

We present new data for 43 peridotite and pyroxenite xenoliths (erupted < 100 Ma) from on- and off-craton settings. When combined with previously published data (n=70) there is a systematic global relationship between inclusion-hosted ³He/⁴He and lattice-hosted major- and trace-elements in olivine and pyroxene that reflects closed system evolution of He in SCLM over the last 3 Ga. In this model radiogenic He has grown into more depleted sub-cratonic lithosphere (${}^{3}\text{He}/{}^{4}\text{He} = 0.5 - 6.5 \text{ R}_{a}$) that formed from higher temperature Archean mantle melts (olivine Mg# 91-95), than in younger (0 - 2 Ga) off-craton lithospheric mantle (Mg# = 88 - 92; 3 He/ 4 He = 4 - 8.8 R_a). More than 70% of the depleted off-craton peridotites have ${}^{3}\text{He}/{}^{4}\text{He}$ in the range typical of MORB (7-9 R_a), which implies that they originate as underplated residues from melting of the convecting asthenosphere with no evidence for the influence of deep primordial mantle (${}^{3}\text{He}/{}^{4}\text{He} > 10$). Modest correlations occur between ³He/⁴He and petrological-geochemical signatures of metasomatic enrichment (e.g. whole-rock SiO2, modal orthopyroxene, LREE/HREE and LILE/HREE) in the offcratonic xenoliths. These indicate that lithospheric mantle enrichment by carbonatite and small-fraction silicate melts/fluids derived from subducted oceanic lithosphere may have perceptibly decreased ³He/⁴He.

We propose that the SCLM is dominantly sourced from the upper-mantle and subsequent He evolution is predominantly governed by time-dependent ⁴He-ingrowth with only a minor influence from metasomatic overprinting. In this scenario, the SCLM is a closed system for He and therefore represents a long-term reservoir for the storage of fluid-hosted volatiles (e.g. CO_2 , H_2O).