Application of fluorination method to isotopologue biogeochemistry

YUICHIRO UENO^{1,2}, TOSHIKI KATSUTA¹, KOUDAI TAGUCHI¹, MAYUKO NAKAGAWA¹, NAOHIRO YOSHIDA^{1,3} AND ALEXIS GILBERT¹

¹Tokyo Institute of Technology

²JAMSTEC

³National Institute of Information and Communications Technology

Presenting Author: ueno.y.ac@m.titech.ac.jp

Clumped isotope geochemistry has been developed from the study on ${}^{13}C{}^{-18}O$ clumping in carbonate/CO₂ system, which is now widely used as a geothermometer. The temperature dependence of the ${}^{13}C{}^{-18}O$ clumping largely relies on rapid oxygen exchange between H₂O and dissolved carbonate and subsequent precipitation quenching the ${}^{13}C{}^{-18}O$ bonding in carbonate. In general, such a prerequisite for geothermometer is not met for the other molecules. For example, oxygen exchange between sulfate and water is known to be very slow. Hence, ${}^{34}S{}^{-18}O$ -clumping in sulfate does not reflect precipitation temperature, but may be resulted from its source with distinct ${}^{34}S{}^{-18}O{}$ -clumping [1]. Therefore, clumped isotopologues in other molecules could have potential to be utilized as a tracer for understanding biogeochemical cycling.

To extend the clumped isotopologue biogeochemistry, we have developed fluorination methods for measuring ³⁴S-¹⁸Oclumping in sulfate and for ¹³C-¹³C clumping in ethane, ethene and ethanol [2]. In these fluorination methods, the samples are first converted into SO_2F_2 or C_2F_6 , which can simplify the analytical issue of isobaric interferences. Especially, ¹³C₂F₆ can be measured by conventional IRMS, not required high-mass resolution. Therefore, in principle, the fluorination method can be applicable to measure many other isotopologues in molecules including various organics.

In both systems, observed natural variations in Δ^{34} S¹⁸O and Δ^{13} C¹³C values are much wider than the expected temperature range assuming equilibrium [1,2]. Hence, in nature, isotopic ordering in ³⁴S-¹⁸O and ¹³C-¹³C is not largely controlled by temperature, but reflect the processes accompanied by kinetic effect. In accord with the bulk isotope analysis, the S-O and C-C clumping could provide additional and independent insights into biogeochemical S, C and O cycling.

[1] Katsuta et al., in this volume; [2] Taguchi et al. (2020) *Rapid Commun Mass Spectrom.* 34, e8761. Taguchi et al. in this volume