Geochemical monitoring of a CO₂ injection into a caprock analogue

ULRICH WEBER¹, ANTONIO PIO RINALDI², CLEMENT ROQUES³, ALBA ZAPPONE², STEFANO M.

BERNASCONI⁴, MADALINA JAGGI², QUINN WENNING², SENECIO SCHEFER⁵, MATTHIAS BRENNWALD⁶ AND ROLF KIPFER^{2,7}

¹University of Oslo

Presenting Author: u.w.weber@geo.uio.no

The storage of CO₂ in geologic formations requires a caprock formation that prevents the buoyant migration of the CO₂. The 'Carbon Sequestration – Series D' experiment [1] aims to describe the behaviour of CO₂-saturated water in such a caprock and to gain understanding on the geochemical interaction between the injected CO₂, in-situ pore-water and the host rock. The experiment targets a fault zone in the low permeable Opalinus Clay, which mimics a typical caprock, in the Swiss rock laboratory of the 'Mont Terri Project'.

 ${
m CO_2}$ -saturated water was injected into the fault zone at constant pressure through an injection borehole from June 2019 to August 2020, The injected ${
m CO_2}$ has a low $\delta^{13}{
m C}$ value compared to the background. The injected water was also labelled with Kr and its inertness shall differentiate the physical transport and the impact of geochemical reactions.

A geochemical monitoring system was installed in a parallel monitoring borehole for the geochemical verification of the stimulated fluid transport. On-site monitoring included continuous, in-line measurement of pH, electrical conductivity and the dissolved gasses CO_2 , O_2 , N_2 , He, Ar and Kr in regular intervals. These analyses were completed by off-line measurement of the waters' major ion composition and isotopic analysis of water and inorganic carbon ($\delta^{18}O$, $\delta^{13}C$).

Here, we present the monitoring setup and results of the experiment. We discuss the CO_2 migration through the fault zone and relate it to the purely physical behaviour of Kr. We also address He, which seems to characterize the mixing of injection and in-situ water.

[1] Zappone et al. (2021), Fault sealing and caprock integrity for $\rm CO_2$ storage: an in situ injection experiment. doi:10.5194/se-12-319-2021

²ETH Zurich

³University of Rennes 1

⁴ETH Zürich

⁵Swiss Geologial Survey

⁶Swiss Federal Institute of Aquatic Science and Technology (Eawag)

⁷Eawag