Methane dynamics in a seasonally hypoxic coastal marine basin

OLGA M. ZYGADLOWSKA¹, WYTZE K. LENSTRA¹, NIELS A.G.M. VAN HELMOND¹, THOMAS RÖCKMANN¹, JESSICA VENETZ², ANNA J. WALLENIUS², PAULA DALCIN MARTINS², ANNELIES J. VERAART², MIKE S. M. JETTEN² AND CAROLINE P. SLOMP¹

¹Utrecht University

²Radboud University

Presenting Author: o.m.zygadlowska@uu.nl

Methane (CH₄) is a key greenhouse gas. Coastal areas account for a major proportion of marine CH₄ emissions. Eutrophication and associated bottom water hypoxia enhance CH₄ production in coastal sediments worldwide. This can lead to a shoaling of the sulfate methane transition zone (SMTZ) in the sediment, less efficient anaerobic CH₄ oxidation and increased escape of CH₄ to the overlying water. The pathways of microbial CH₄ removal in the sediment and water column of such coastal systems are still not well explored.

In this study, we assess the fate of CH₄ produced in coastal sediments at a site in a seasonally hypoxic coastal marine basin (Scharendijke, Lake Grevelingen, the Netherlands) in March and September 2020. The site is characterized by high rates of sediment CH₄ production and a shallow SMTZ (~5-10 cm depth). We find that, in March, when the water column is fully oxygenated, most CH4 produced is removed in the sediment through anaerobic and aerobic oxidation pathways. When waters below 35 m depth are anoxic and sulfidic, as observed in September, the SMTZ in the sediment shoals further and substantial CH4 escapes from the sediment and accumulates below the redoxcline. Methane isotope profiles (δ^{13} C- CH₄, δ D-CH₄) indicate limited removal of CH₄ in the sediment and in the anoxic part of the water column in September. Most CH4 removal takes place at the redoxcline, likely through aerobic oxidation. Elevated CH4 concentrations in near-surface waters (140 nM) point towards potential release of CH₄ to the atmosphere in this coastal area.