Mechanisms of 234U enrichment in waters of carbonate terrains - Dead Sea watershed

DALAL SAEED1,2,3, MORDECHAI STEIN4, REVITAL BOOKMAN5 AND BOAZ LAZAR6

1Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa.
2Geological Survey of Israel, Jerusalem
3Institute of Earth Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem
4Hebrew University of Jerusalem
5Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 31905, Israel.
6The Hebrew University

Presenting Author: dalal_s3eed@yahoo.com

Abstract

The isotopic activity ratio 234U/238U in groundwater and runoff is controlled by various processes such as water-rock interaction, dissolution-precipitation mechanisms, α-recoil processes, and mixing of various water types. In this study, we attempt to describe and formulate the processes dictating the 234U/238U activity ratios in the waters from carbonate terrains from the Dead Sea watershed. We constructed a 1-D advection-reaction model for 234U and 238U assuming that the retardation factor of uranium is controlled by co-precipitation of uranium-carbonate complexes with calcite during recrystallization with the carbonate aquifer. This model was run for 234U and 238U (and the major ions composition) measured in waters sampled in various sources from carbonate terrain in the Dead Sea watershed. The waters were samples over a rather large areal extent from the freshwater Dan Spring in northern Israel that discharges Mt. Hermon Jurassic aquifers, the large groundwater reservoir in the south Levant, and the Sataf Spring that discharges the Judea Mt. Cretaceous aquifer and the Ein Gedi saline springs on the shores of the Dead Sea in southern Israel.

The model results suggest that 234U enrichment in the waters of these carbonate aquifers is controlled by direct α-recoil mechanism and by the co-precipitation of 238U, 234U during the recrystallization of the aquifer country rocks.