The relationship between dissolved organic matter (DOM) and arsenicrelease at two, hydrogeologicallycontrasting, aquifers in Kandal Province, Cambodia

OLIVER MOORE, NAJI BASSIL, LAURA RICHARDS, BART VAN DONGEN, DAVID POLYA AND JONATHAN RICHARD LLOYD

University of Manchester

Presenting Author: oliver.moore@manchester.ac.uk

The contamination of drinking water sources with naturallyoccurring arsenic impacts tens of millions of people globally [1]. In the highly-reducing, alluvial and deltaic aquifers of South East Asia, microbial-mediated reductive-dissolution of arsenicbearing iron (oxy)hydroxides is thought to be the primary cause of arsenic-release into the aqueous-phase [2]. Organic matter (OM) plays a key part in this process, as a source of bioavailable electron donors and electron shuttles [3]; and in competitive sorption and complexation reactions [4].

Extensive characterisation of dissolved organic matter (DOM) was carried out on groundwaters sampled from eight 18 metre deep wells, drilled at two hydrogeologically-contrasting sites (a clay-dominated and a sand-dominated site, called "Clay Site" and "Sand Site", respectively) southeast of Phnom Penh, Kandal Province, Cambodia. The hydrogeology of these sites has been characterised extensively in previous studies [5].

Excitation emission matrix (EEM) analysis showed that Clay Site DOM is characterised by a higher proportion of microbialderived compounds (e.g. tryptophan-like) and of higher biolability; whereas Sand Site DOM is characterised by higher proportions of terrestrial-derived compounds (e.g. fulvic acidlike) and a lower bio-lability. These results are comparable with previous EEM studies of the DOM of the region [6]. Further analysis of the DOM from these sites (e.g. by Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry – FTICR-MS) is planned in order to investigate the relationship between DOM molecular composition, bioavailability and arsenic-release. These findings will provide further insights into the role of OM in arsenic-release by reductive-dissolution, and help target further studies.

References:

[1] Polya & Middleton. (2017). in Best Practice Guide on the Control of Arsenic in Drinking Water 16, 1–23.; [2] Islam et al. (2004). Nature 430, 68–71.; [3] Rowland et al. (2007). Geobiology 5, 281–292.; [4] Mladenov et al. (2015). Environ. Sci. Technol. 49, 10815–10824.; [5] Richards et al. (2017). Sci. Total Environ. 590–591, 540–553.; [6] Richards et al. (2019) Geosci. Front. 10, 1653–1667.