The Proteus Perspective: new capabilities of mass-filter, collision cell, multi-collector inductivelycoupled mass-spectrometry (CC-MC-ICPMS/MS)

TIM ELLIOTT¹, DAN BEVAN¹, CHRISTOPHER D. COATH¹, JAMIE LEWIS¹, KATHRYN M.M SHAW¹, TU-HAN LUU², GRANT CRAIG³, NICHOLAS LLOYD⁴, MARKUS PFEIFER³, HENNING WEHRS³ AND JOHANNES SCHWIETERS³

¹University of Bristol

²Université de Paris - IPGP - CNRS/UMR 7154

³Thermo Fisher Scientific (Bremen) GmbH

⁴Thermo Fisher Scientific

Presenting Author: tim.elliott@bristol.ac.uk

'Proteus' is a prototype, tribrid mass-spectrometer that couples a magnetic sector, multi-collection system with an inductivelycoupled plasma 'front' end including quadrupole mass-filter and collision cell. This instrument combines the advantages of plasma-ionisation multi-collection with a flexible means to remove troublesome interferences, which have been a limitation to the full application of MC-ICPMS. Here we review the capabilities of this instrument as explored over more than five years of operation in our laboratory.

In the simplest mode of operation, the mass-filter is operated at full transmission and the collision cell simply removes interferences from the spectrum to be analysed. In this way, the efficient charge-transfer between Ar^+ and H_2 enables ⁴⁰Ca to be measured with precision. We demonstrate the success of such an approach in resolving nucleosynthetic, radiogenic and mass dependent (using a 40-42-43-44 double spike inversion) variations of ⁴⁰Ca to ±15ppm (2SE, n>20).

Alternatively, the collision cell can be used to create new analyte species (e.g. SrF^+ by reaction of Sr^+ with SF_6 and TiO^+ by reaction of Ti^+ with O_2) which are then chemically resolved from unreactive or less reactive interferences (e.g. ${}^{87}Rb^+$ or ${}^{50}Cr^+$). Here, the mass-filter is operated in a band-pass mode, such that it transmits only the atomic species of interest into the collision cell and creates a clean background for the mass spectrum of the analysed molecular species. This approach is especially valuable for laser ablation, where there is no opportunity to remove target elements from matrix by prior chemical separation. Thus, we can date *in situ* common crustal rocks, with minimal sample preparation, to a precision better than $\pm 2Ma$ in 400Ma. Further, we can detect, *in situ*, pre-solar grains in the matrices of chondritic meteorites.

A final arrangement is to run the mass-filter at single mass unit transmission, which in combination with the collision cell and magnetic sector, achieves a dynamic range in isotope ratio measurement of up to 5×10^{-12} (e.g. for 210 Pb/ 208 Pb) approaching the performance of accelerator mass-spectrometers.