Geochemical monitoring of CO₂ and CH₄ injection in a carbonate shallow aquifer

GUELARD JULIA¹, SONIA NOIREZ¹, HÉLÈNE VERMESSE¹, PATIENCE EKAMBAS¹, LILIA ARFI¹, FRÉDÉRIC MARTIN¹, AUDREY ESTUBLIER¹, BRUNO GARCIA², CORINNE LOISY³, LÉNA ROSSI³, ADRIAN CEREPI⁴, OLIVIER LE ROUX³ AND ANÉLIA PETIT³

 ¹IFP Energies Nouvelles
²IFP Energies nouvelles
³EA 4592 « Géoressource & Environnement », ENSEGID-Bordeaux INP
⁴ENSEGID

Presenting Author: julia.guelard@ifpen.fr

In order to ensure the safety of future CO_2 or natural gas geological storage sites, the implementation of monitoring system is essential. The aquifers located near the storage areas are key places of study as they represent locations where gas may accumulate before leaking into the atmosphere.

In this context, the Aquifer-CO2Leak project is dedicated to the development of monitoring tools and methodologies for CO_2 and CH_4 detection within the saturated zone, as well as understanding the behaviour of these gases in a carbonate aquifer.

Based on numerical simulations results, an induced leakage experiment was designed and conducted on the experimental pilot site of Saint-Emilion in France. Water was saturated with a gas mixture of CO_2 , CH_4 , He and Kr in a specific designed tank, and was then injected in the aquifer through an injection well. Monitoring was conducted by collecting periodic samples through 3 observation wells located at a maximal distance of 10m. Analyses of concentration and $\delta^{13}C$ of dissolved inorganic carbon (DIC) and methane (CH₄) were realized in laboratory.

The experiment shows that $\delta^{13}C$ of DIC is a more sensitive tool than DIC concentrations to monitor CO_2 plume distribution. These two parameters allow the determination of the physicochemical processes taking place in the aquifer which involve CO_2 . The CH_4 content and isotopic measurements were more difficult to realise. At such low contents (< 5µmol.L⁻¹) several measurement methods have been tested and will be presented.