²²⁷Ac and ²³¹Pa in the southeast sector of Southern Ocean (Bonus GoodHope – GEOTRACES cruise

 $\begin{array}{c} \textbf{MARTIN LEVIER}^1, \text{MATTHIEU ROY-BARMAN}^2 \text{ AND} \\ \text{ARNAUD DAPOIGNY}^3 \end{array}$

¹LSCE

²LCSE/UVSQ/IPSL

³LSCE/IPSL, CEA-CNRS-UVSQ

Presenting Author: martin.levier@lsce.ipsl.fr

²²⁷Ac (half-life = 27y) is a radioelement produced by the decay of ²³¹Pa. As ²³¹Pa is enriched in deep marine sediments, soluble ²²⁷Ac diffusing from the sediment in the bottom water is a good tracer of the vertical mixing of deep water on the decadal time scale. Nevertheless, relatively few ²²⁷Ac data are available due to the very low ²²⁷Ac concentration in seawater that requires sampling 100s of L for each measurement by nuclear spectrometry. We have developed a protocol to analyze ²²⁷Ac and 231Pa by isotope dilution and mass spectrometry, which requires only 10L of seawater. We apply this protocol to archived samples from the Bonus GoodHope/GEOTRACES cruise in the Atlantic sector of the Southern Ocean. A station in the Weddell gyre and another one the southern part of the Antarctic Circumpolar Current (ACC) over the mid-Atlantic ridge have been already analyzed. In the Weddell gyre, the ²²⁷Ac excess (unsupported by 231Pa and noted ²²⁷Ac_{ys}) range from 2.1 \pm 1.3 in the surface waters to 7.6 \pm 1.7 at 3920 m (uncertainties expressed as 2s_n, 1 ag/kg = 0.161 dpm/m³), in good agreement with [1]. There is also a ²²⁷Ac excess in the ACC up to the surface waters, from 1.8 \pm 1.2 ag/kg at 60 m to 6.3 \pm 2.1 ag/kg at 2300 m, over the ridge in agreement with the finding that hydrothermal activity may be a source of ²²⁷Ac in the ocean. The full dissolved ²²⁷Ac and ²³¹Pa section and selected particulate data will be presented and used to test and constrain the isopycnal-scavenging mixing model over the Bonus GoodHope section already proposed for Th isotopes [2].

- [1] Geibert et al. (2008) Mar. Chem. 109, 238-249.
- [2] Roy-Barman et al. (2019) Deep Sea Res. 149, 103042.