Oldest methanogens from subseafloor hydrothermal environment, South Africa

 BARBARA CAVALAZZI^{1,2}, LAURENCE LEMELLE³, ALEXANDRE S SIMIONOVICI^{4,5}, SHERRY L. CADY⁶, MICHAEL RUSSELL⁷, ELENA BAILO⁸, ROBERTO CANTERI⁹, EMANUELE ENRICO¹⁰, ALAIN MANCEAU⁴, ASSIMO MARIS¹, MURIELLE SALOME¹¹, EMILIE THOMASSOT¹², NORDINE BOUDEN¹², REMI TUCOULOU TACHOUERES¹¹ AND AXEL HOFMANN¹³
 ¹Università di Bologna

²University of Bologna
³LGL-TPE, ENS de Lyon, Université de Lyon, CNRS
⁴ISTerre, University of Grenoble-Alpes, CNRS
⁵Institut Universitaire de France
⁶Pacific Northwest National Laboratory, EMSL
⁷Università degli Studi di Torino
⁸WITec GmbH
⁹FBK-Fondazione Bruno Kessler
¹⁰INRiM, Istituto Nazionale di Ricerca Metrologica
¹¹European Synchrotron Radiation Facility
¹²Université de Lorraine, CNRS, CRPG
¹³University of Johannesburg

Presenting Author: barbara.cavalazzi@unibo.it

Subsurface habitats on Earth host an extensive extant biosphere and likely provided one of Earth's earliest microbial habitats. Here, we present ~3.42-billion-year-old carbonaceous filamentous microfossils as investigated over a range of scales (optical microscopy, Raman, ToF-SIMS, STEM, EELS, nano-XRF and XANES), that inhabited a palaeo-subseafloor hydrothermal vein system [1] of the Barberton greenstone belt (BGB) in South Africa. We demonstrated that the studied filaments likely provide the oldest direct evidence for subsurface methanogens. These findings strengthen the concept of hydrothermal springs as the likely site of life's origin, and expand the frontiers of the habitable early Earth.

[1] Hofmann, C. Harris Silica alteration zones in the Barberton greenstone belt: a window into subseafloor processes 3.5–3.3 Ga ago. *Chem. Geol.* **257**, 221–239 (2008).