Does dawsonite preserve mantle CO₂ signature? Implication for CO₂ origin at Covasna, eastern Transylvania, Romania

THOMAS PIETER LANGE^{1,2,3}, DÓRA CSERESZNYÉS^{4,5}, ALEXANDRU SZAKÁCS^{6,7}, GYÖRGY CZUPPON⁸, ANDRÁS PAPUCS⁹, ÁKOS KŐVÁGÓ⁴, ORSOLYA GELENCSÉR^{3,4,10}, ÁGNES GÁL¹¹, CSILLA KIRÁLY¹², ÁBEL SZABÓ⁴, SÁNDOR GYILA¹³, LÁSZLÓ PALCSU³, ATTILA DEMÉNY⁸, CSABA SZABÓ^{4,14}, GYÖRGY FALUS⁵ AND ISTVÁN JÁNOS KOVÁCS²

¹Eötvös Loránd University

²MTA EK Lendület Pannon LitH2Oscope Research Group, Centre for Energy Research ³Isotope Climatology and Environmental research Centre (ICER), Institute for Nuclear Research ⁴Eötvös University ⁵Mining and Geological Survey of Hungary ⁶Institute of Geodynamics, Romanian Academy ⁷Sapientia University ⁸Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, ELKH ⁹County Nature Conservation and Mountain Rescue Center ¹⁰O&GD Central Ltd. ¹¹Babes-Bolyai University ¹²Geographical Institute, Research Centre for Astronomy and Earth Sciences, ELKH ¹³Dr. Benedek Géza Rehabilitation Hospital ¹⁴Geodetic and Geophysical Institute, Eötvös Loránd Research Network, Research Centre for Astronomy and Earth Sciences Presenting Author: lange.thomas@hotmail.com

One of the most discussed topic concerning global climate change is global CO₂ emanation. One source for the outgassing CO₂ is the Earth's mantle where CO₂ as an inert gas migrates through fault zones to the surface and the atmosphere contributing to its carbon budget. The internal part of the Carpathian bend area in Romania hosts a large number of CO₂ emanation spots. One of them, Covasna spa, South-eastern Transylvania, is a famous locality in the Carpathian-Pannonian region for its abundant CO₂ outflows, both dry - mofettes, and wet - carbonated mineral waters. In the uninhabited vecinity of the town carbonate precipitation in the form of dawsonite deposition, along with realgar and orpiment, was observed and studied. Dawsonite, a hydrous carbonate mineral - NaAlCO₃(OH)₂) -, records and preserves $\delta^2 H,\,\delta^{13} C$ and $\delta^{18} O$ values of the migrating deep-sourced CO2 as well as of the associated H₂O. Furthermore, CO₂-carried noble gas isotopic ratios can also be used for origin determination. Our stable isotope study on dawsonite shows a mixing-line trend between mantle source – gained from freshly emanated CO₂ (extracted from spring water) - and the atmosphere,

respectively. The dawsonite δ^2 H values (-47.7 to -53.9 ‰) show similarities with the δ^2 H isotopic composition (-48.4 to -50.9 ‰) of the CO₂-rich spring water. Calculated δ^{13} C values of dawsonite (-2 to -4 ‰), presumably in equilibrium with CO₂ during mineral formation, fall in the same range as in the measured CO₂ gas phase (-2 ‰) which may suggest mantle origin. We conclude that this mineral is potentially able to preserve the original stable isotopic fingerprint of the CO₂ emanations to which it is genetically related in the study area. The high emanation rates of possible mantle-origin CO₂ is most likely linked to the faults cutting through the thin-skinned nappe structure of the area whose dynamics is connected to the major tectonic discontinuity between the suture zone of the Carpathian Belt and the Moesian platform basement.