Effect of sulphur and oxygen fugacity on vapour-saturation pressure calculations

ERY HUGHES¹, PHILIPPA LIGGINS², LEE SAPER¹ AND EDWARD STOLPER¹

¹Caltech

²University of Cambridge

Presenting Author: ehughes@caltech.edu

Dissolved H₂O and CO₂ concentrations in silicate glass are often used to calculate the entrapment pressure of a melt inclusion, eruption pressure of matrix glass, and composition of a vapour bubble in a melt inclusion. Currently available programs to calculate the pressure of vapour-saturation (P_{sat}^v) and coexisting vapour composition from measured concentrations of dissolved volatiles in melts/glasses (e.g., VolatileCalc, MagmaSat, VESIcal, etc.) assume the vapour contains only H₂O and CO₂, neglecting the role of sulphur- and other hydrogen- and carbon-bearing species in the vapour. We have developed a thermodynamic model where the melt contains H2Omol, OH, $CO_{2 \text{ mol}}$, $CO_{3}^{2^{2}}$, $S^{2^{2}}$, and $SO_{4}^{2^{2}}$; and the vapour contains O_{2} , H_{2} , H₂O, CO, CO₂, CH₄, S₂, SO₂, H₂S, and OCS. The pressure at which the sum of the partial pressures of all the vapour species equals the total pressure is P^{v}_{sat} , and the vapour composition is given by the partial pressures of the vapour species. The fugacities of CO₂ ($f_{\rm CO2}$) and H₂O ($f_{\rm H2O}$) are calculated from dissolved H₂O_{mol} and CO₃²⁻ concentrations using known solubility functions. We use the concepts of sulphide and sulphate capacity which, given f_{Ω^2} (e.g., from Fe³⁺/Fe²⁺ or S^{6+}/S^{2-}) and the total dissolved sulphur (S_T), are used to solve for f_{S2} . Given these fugacities (f_{CO2}, f_{H2O}, f_{O2} , and f_{S2}), we calculate $f_{\rm H2}, f_{\rm CO}, f_{\rm SO2}, f_{\rm CH4}, f_{\rm H2S}$, and $f_{\rm OCS}$ as a function of total pressure. Fugacities of all vapour species are converted to partial pressures and mole fractions (i.e., vapour composition) at a given pressure using fugacity coefficient functions. For the same dissolved H₂O and CO₂ in the melt: (1) Including additional vapour species increases calculated P_{sat}^{v} – hence, previous estimates of P_{sat}^{v} represent minima. This also applies to our results as we have not included Cl, F, N, etc. -bearing species, but their contributions to total pressure are typically smaller than S-bearing species. And (2) decreasing melt f_{02} increases the calculated P_{sat}^{v} because the proportion of species such as H2 and CO increases in the vapour. Additionally, we show how bounds on $f_{\rm O2}$ are obtained by comparing S_T to the sulphide content at sulphide saturation and/or sulphate content at anhydrite saturation.