Ultra-high supermountains linked to the evolution of species

ZIYI ZHU ${ }^{1}$, IAN H. CAMPBELL ${ }^{1}$ AND CHARLOTTE M. ALLEN 2

${ }^{1}$ Australian National University
${ }^{2}$ Queensland University of Technology
Presenting Author: ziyi.zhu@anu.edu.au
The First Great Oxidation Event, at ca. 2.45 Ga , changed the oxidation state of Earth's atmosphere and oceans from anoxic to oxic, and had a profound effect on surface weathering, but surprisingly, it had no detectable influence on the evolution of species or on their maximum size (biovolume). Earth's biovolume increased in two giant steps [1], both of approximately seven orders of magnitude, the first at ca. 1.85 Ga , when eukaryotes arguably made their first appearance, and the second between 750 and 500 Ma , when animals first appeared. Here we use the distribution of low-Lu zircons from the world's major rivers [2], which correlate with peaks in high-pressure metamorphism, to document the temporal distribution of ultrahigh, Himalayan-style mountains. We show that $1.95-1.85 \mathrm{Ga}$ and $650-500 \mathrm{Ma}$ were periods of extensive ultra-high supermountains formation, whereas the intervening period was not. We suggest that the ultra-high supermountains were produced by continent-continent collisions, associated with the assembly of the Nuna and Gondwana supercontinents. We argue that a profound increase in the flux of essential nutrients into the oceans, which resulted from the rapid erosion of these ultra-high supermountains, was responsible for the explosions of biological activity that occurred at these times.
[1] Payne, J. L. et al. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings of the National Academy of Sciences 106, 24-27 (2009).
[2] Zhu, Z., Campbell, I. H., Allen, C. M. \& Burnham, A. D. S-type granites: Their origin and distribution through time as determined from detrital zircons. Earth and Planetary Science Letters 536, 116140 (2020).

