Impacts of the main sources and geochemical processes on the distribution of Ra isotopes in the Southeast Atlantic Ocean

LUCIA HELENA VIEIRA^{1,2}, AARON JOSEPH BECK², MARK JAMES HOPWOOD², JAN SCHOLTEN³ AND ERIC P. ACHTERBERG²

¹Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research ²GEOMAR Helmholtz Centre for Ocean Research Kiel ³Christian-Albrecht University Kiel

Presenting Author: lucia.lhv@gmail.com

The southeast Atlantic Ocean features an important eastern boundary region influenced by the discharge the world's second largest river, and the Benguela Upwelling system and its associated oxygen minimum zone (OMZ). This study is part of the GEOTRACES international program (section GA08) and aimed to use Ra isotopes (²²⁶Ra, ²²⁸Ra, ²²⁴Ra, and ²²³Ra) to investigate several key ocean boundary processes in the South Atlantic Ocean, including Ra supply by the shelf, abyssal and slope sediments, the influence of the Congo River, the Angola-Benguela front (ABF), and the wind-driven coastal upwelling.

The Congo River plume dominates the Ra isotope distributions in surface waters of the Congo-Angola region (3° S). Their elevated ²²⁸Ra and ²²⁶Ra activities in its extensive surface plume reached up to 1000 km from the river mouth. A shelf ²²⁸Ra plume in the upper 300 m were observed in the Benguela region (29° S). The enhanced ²²⁸Ra activities that extends >1000 km from the African continental margin is unrelated to riverine sources, and may indicate that Ra is derived from shelf and slope sediments and laterally transported along isopycnal surfaces.

The ²²⁸Ra /²²⁶Ra ratios are useful tracers when comparing water bodies. As such, the ABF is noticeable in the ²²⁸Ra/²²⁶Ra distributions. In addition, increased Ra isotopes, Si and Fe (II) concentrations were observed in the OMZ of the Benguela region indicating inputs from additional Ra sources, such as the reducing shelf sediments as a result of silica dissolution, and/or the presence of submarine groundwater discharge (SGD) along the Namibian shelf. Rainfall episodes in the Namibian hinterland may lead to a subterranean aquifer recharge and its subsequent discharge as SGD into the Namibian coast. Previous studies suggested that such process may be related to the nearshore hydrogen sulfide (H₂S) eruptions observed off Namibia ^[1,2].

[1] K. C. Emeis, V. Brüchert, B. Currie, R. Endler, T. Ferdelman, A. Kiessling, T. Leipe, K. Noli-Peard, U. Struck and T. Vogt, *Cont. Shelf Res.*, 2004, **24**, 627–642.

[2] S. J. Weeks, B. Currie, A. Bakun and K. R. Peard, *Deep. Res. Part I Oceanogr. Res. Pap.*, 2004, **51**, 153–172.