New measurements and compilation provide a 25,000 year view of global deep-sea radiocarbon

DR. PATRICK (HE/HIM) RAFTER¹, WILLIAM R GRAY², ANDREA BURKE³, KASSANDRA COSTA⁴, JULIA GOTTSCHALK⁵, MATHIS HAIN⁶, SOPHIA K.V. HINES⁷, JAMES W. B. RAE³, JOHN SOUTHON⁸ AND TIMOTHY DEVRIES⁹

¹UC IRVINE

²Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL)
³University of St Andrews
⁴Woods Hole Oceanographic Institute
⁵Christian-Albrechts-Universität zu Kiel
⁶University of California - Santa Cruz
⁷Lamont-Doherty Earth Observatory of Columbia University
⁸UC Irvine
⁹UCSB
Presenting Author: prafter@uci.edu

Here, using an updated compilation of published and newly measured marine microfossil radiocarbon (Δ^{14} C), we examine the evolution of deep seawater Δ^{14} C over the past 25,000 years. Our new dataset has >1300 more observations than prior work, including new measurements from throughout the deep Pacific as well as the first glacial-interglacial record of deep Indian Ocean Δ^{14} C. The improved spatial distribution and number of observations allows us to investigate prominent theories of ocean basin ventilation changes (e.g., the "Bipolar See-Saw" and the "Sub-Arctic See Saw") from Heinrich Stadial 2 (»25,000 years BP) through the Last Glacial Maximum, deglaciation, and current interglacial warm period.