Novel insights into the volatile content of arc magmas recorded in the deep roots of Kohistan arc

BENJAMIN URANN1, VÉRONIQUE LE ROUX2, OLIVER JAGOUTZ2, OTHMAR MÜNTENER4, MARK BEHN5 AND EMILY CHIN6

1Woods Hole Oceanographic Institution
2WHOI
3MIT
4University of Lausanne
5Boston College
6Scripps Institution of Oceanography, UC San Diego

Presenting Author: burann@whoi.edu

Water cycled between the crust and mantle affects the geophysical, rheological, and geochemical properties of minerals and melts, particularly at subduction zones where water is returned from surface reservoirs to the mantle. To constrain the H\textsubscript{2}O content of arc magmas, previous studies have relied on measuring extrusive products and mineral-hosted melt inclusions; yet these methods have inherent limitations, which may obfuscate the full range of H\textsubscript{2}O in arc magmas. Here we use secondary ion mass spectrometry to analyze H\textsubscript{2}O concentrations in pyroxenes from two suites of lower arc cumulate rocks from the Kohistan paleo-arc (NW Pakistan) to evaluate the H\textsubscript{2}O content of the melts from which the cumulates crystallized. Pyroxenes were found to retain their primary water abundances and record two distinct parental melts: one H\textsubscript{2}O-poor (<1 wt.%), the other H\textsubscript{2}O-rich (>4 wt.%). Extensive crystal fractionation of the latter led to the formation of super-hydrous andesitic to dacitic melts (~12–20 wt.% H\textsubscript{2}O), predicted petrologically yet rarely if ever observed. Foundering of water-rich lower arc roots can deliver water fluxes comparable to eclogitized subducted oceanic crust, which underpins the importance of foundering in global volatile cycling.